2,173 research outputs found

    Effective Marking Equivalence Checking in Systems with Dynamic Process Creation

    Full text link
    The starting point of this work is a framework allowing to model systems with dynamic process creation, equipped with a procedure to detect symmetric executions (ie., which differ only by the identities of processes). This allows to reduce the state space, potentially to an exponentially smaller size, and, because process identifiers are never reused, this also allows to reduce to finite size some infinite state spaces. However, in this approach, the procedure to detect symmetries does not allow for computationally efficient algorithms, mainly because each newly computed state has to be compared with every already reached state. In this paper, we propose a new approach to detect symmetries in this framework that will solve this problem, thus enabling for efficient algorithms. We formalise a canonical representation of states and identify a sufficient condition on the analysed model that guarantees that every symmetry can be detected. For the models that do not fall into this category, our approach is still correct but does not guarantee a maximal reduction of state space.Comment: In Proceedings Infinity 2012, arXiv:1302.310

    Adaptable processes

    Get PDF
    We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities

    Read Operators and their Expressiveness in Process Algebras

    Full text link
    We study two different ways to enhance PAFAS, a process algebra for modelling asynchronous timed concurrent systems, with non-blocking reading actions. We first add reading in the form of a read-action prefix operator. This operator is very flexible, but its somewhat complex semantics requires two types of transition relations. We also present a read-set prefix operator with a simpler semantics, but with syntactic restrictions. We discuss the expressiveness of read prefixes; in particular, we compare them to read-arcs in Petri nets and justify the simple semantics of the second variant by showing that its processes can be translated into processes of the first with timed-bisimilar behaviour. It is still an open problem whether the first algebra is more expressive than the second; we give a number of laws that are interesting in their own right, and can help to find a backward translation.Comment: In Proceedings EXPRESS 2011, arXiv:1108.407

    Mining structured Petri nets for the visualization of process behavior

    Get PDF
    Visualization is essential for understanding the models obtained by process mining. Clear and efficient visual representations make the embedded information more accessible and analyzable. This work presents a novel approach for generating process models with structural properties that induce visually friendly layouts. Rather than generating a single model that captures all behaviors, a set of Petri net models is delivered, each one covering a subset of traces of the log. The models are mined by extracting slices of labelled transition systems with specific properties from the complete state space produced by the process logs. In most cases, few Petri nets are sufficient to cover a significant part of the behavior produced by the log.Peer ReviewedPostprint (author's final draft

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Checking and Enforcing Security through Opacity in Healthcare Applications

    Full text link
    The Internet of Things (IoT) is a paradigm that can tremendously revolutionize health care thus benefiting both hospitals, doctors and patients. In this context, protecting the IoT in health care against interference, including service attacks and malwares, is challenging. Opacity is a confidentiality property capturing a system's ability to keep a subset of its behavior hidden from passive observers. In this work, we seek to introduce an IoT-based heart attack detection system, that could be life-saving for patients without risking their need for privacy through the verification and enforcement of opacity. Our main contributions are the use of a tool to verify opacity in three of its forms, so as to detect privacy leaks in our system. Furthermore, we develop an efficient, Symbolic Observation Graph (SOG)-based algorithm for enforcing opacity
    corecore