3,016 research outputs found

    An Efficient Representation for Filtrations of Simplicial Complexes

    Get PDF
    A filtration over a simplicial complex KK is an ordering of the simplices of KK such that all prefixes in the ordering are subcomplexes of KK. Filtrations are at the core of Persistent Homology, a major tool in Topological Data Analysis. In order to represent the filtration of a simplicial complex, the entire filtration can be appended to any data structure that explicitly stores all the simplices of the complex such as the Hasse diagram or the recently introduced Simplex Tree [Algorithmica '14]. However, with the popularity of various computational methods that need to handle simplicial complexes, and with the rapidly increasing size of the complexes, the task of finding a compact data structure that can still support efficient queries is of great interest. In this paper, we propose a new data structure called the Critical Simplex Diagram (CSD) which is a variant of the Simplex Array List (SAL) [Algorithmica '17]. Our data structure allows one to store in a compact way the filtration of a simplicial complex, and allows for the efficient implementation of a large range of basic operations. Moreover, we prove that our data structure is essentially optimal with respect to the requisite storage space. Finally, we show that the CSD representation admits fast construction algorithms for Flag complexes and relaxed Delaunay complexes.Comment: A preliminary version appeared in SODA 201

    Rainbow domination and related problems on some classes of perfect graphs

    Full text link
    Let k∈Nk \in \mathbb{N} and let GG be a graph. A function f:V(G)→2[k]f: V(G) \rightarrow 2^{[k]} is a rainbow function if, for every vertex xx with f(x)=∅f(x)=\emptyset, f(N(x))=[k]f(N(x)) =[k]. The rainbow domination number γkr(G)\gamma_{kr}(G) is the minimum of ∑x∈V(G)∣f(x)∣\sum_{x \in V(G)} |f(x)| over all rainbow functions. We investigate the rainbow domination problem for some classes of perfect graphs

    A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set

    Full text link
    An independent dominating set D of a graph G = (V,E) is a subset of vertices such that every vertex in V \ D has at least one neighbor in D and D is an independent set, i.e. no two vertices of D are adjacent in G. Finding a minimum independent dominating set in a graph is an NP-hard problem. Whereas it is hard to cope with this problem using parameterized and approximation algorithms, there is a simple exact O(1.4423^n)-time algorithm solving the problem by enumerating all maximal independent sets. In this paper we improve the latter result, providing the first non trivial algorithm computing a minimum independent dominating set of a graph in time O(1.3569^n). Furthermore, we give a lower bound of \Omega(1.3247^n) on the worst-case running time of this algorithm, showing that the running time analysis is almost tight.Comment: Full version. A preliminary version appeared in the proceedings of WG 200

    Self-stabilizing algorithms for Connected Vertex Cover and Clique decomposition problems

    Full text link
    In many wireless networks, there is no fixed physical backbone nor centralized network management. The nodes of such a network have to self-organize in order to maintain a virtual backbone used to route messages. Moreover, any node of the network can be a priori at the origin of a malicious attack. Thus, in one hand the backbone must be fault-tolerant and in other hand it can be useful to monitor all network communications to identify an attack as soon as possible. We are interested in the minimum \emph{Connected Vertex Cover} problem, a generalization of the classical minimum Vertex Cover problem, which allows to obtain a connected backbone. Recently, Delbot et al.~\cite{DelbotLP13} proposed a new centralized algorithm with a constant approximation ratio of 22 for this problem. In this paper, we propose a distributed and self-stabilizing version of their algorithm with the same approximation guarantee. To the best knowledge of the authors, it is the first distributed and fault-tolerant algorithm for this problem. The approach followed to solve the considered problem is based on the construction of a connected minimal clique partition. Therefore, we also design the first distributed self-stabilizing algorithm for this problem, which is of independent interest
    • …
    corecore