99 research outputs found

    Aircraft Accident Prevention: Loss-of-Control Analysis

    Get PDF
    The majority of fatal aircraft accidents are associated with loss-of-control . Yet the notion of loss-of-control is not well-defined in terms suitable for rigorous control systems analysis. Loss-of-control is generally associated with flight outside of the normal flight envelope, with nonlinear influences, and with an inability of the pilot to control the aircraft. The two primary sources of nonlinearity are the intrinsic nonlinear dynamics of the aircraft and the state and control constraints within which the aircraft must operate. In this paper we examine how these nonlinearities affect the ability to control the aircraft and how they may contribute to loss-of-control. Examples are provided using NASA s Generic Transport Model

    Aircraft loss-of-control prevention and recovery: a hybrid control strategy

    Get PDF
    The Complexity of modern commercial and military aircrafts has necessitated better protection and recovery systems. With the tremendous advances in computer technology, control theory and better mathematical models, a number of issues (Prevention, Recon guration, Recovery, Operation near critical points, ... etc) moderately addressed in the past have regained interest in the aeronautical industry.Flight envelope is essential in all ying aerospace vehicles. Typically, ying the vehicle means remaining within the ight envelope at all times. Operation outside the normal ight regime is usually subject to failure of components (Actuators, Engines, Deection Surfaces) , pilots's mistakes, maneuverability near critical points and environmental conditions(crosswinds...) and in general characterized as Loss-Of-Control (LOC) because the aircraft no longer responds to pilot's inputs as expected.For the purpose of this work,(LOC) in aircraft is de ned as the departure from the safe set (controlled flight) recognized as the maximum controllable (reachable) set in the initial ight envelope. The LOC can be reached either through failure, unintended maneuvers, evolution near irregular points and disturbances. A coordinated strategy is investigated and designed to ensure that the aircraft can maneuver safely in their constraint domain and can also recover from abnormal regime. The procedure involves the computation of the largest controllable (reachable) set (Safe set) contained in the initial prescribed envelope. The problem is posed as a reachability problem using Hamilton-Jacobi Partial Di erential Equation(HJ - PDE) where a cost function is set to be minimized along trajectory departing from the given set. Prevention is then obtained by computing the controller which would allow the flight vehicle to remain in the maximum controlled set in a multi-objective set up. Then the recovery procedure is illustrated with a two - point boundary value problem. Once illustrate, a set of control strategies is designed for recovery purpose ranging from nonlinear smooth regulators with Hamilton Jacobi-Bellman (HJB) formulation to the switching controllers with High Order Sliding Mode Controllers (HOSMC). A coordinated strategy known as a high level supervisor is then implemented using the multi-models concept where models operate in specified safe regions of the state space.Ph.D., Mechanical Engineering and Mechanics -- Drexel University, 201

    AUTONOMOUS SPACECRAFT RENDEZVOUS WITH A TUMBLING OBJECT: APPLIED REACHABILITY ANALYSIS AND GUIDANCE AND CONTROL STRATEGIES

    Get PDF
    Rendezvous and proximity operations are an essential component of both military and commercial space missions and are rising in complexity. This dissertation presents an applied reachability analysis and develops a computationally feasible autonomous guidance algorithm for the purpose of spacecraft rendezvous and proximity maneuvers around a tumbling object. Recent advancements enable the use of more sophisticated, computation-based algorithms, instead of traditional control methods. These algorithms are desirable for autonomous applications due to their ability to optimize performance and explicitly handle constraints (e.g., safety, control limits). In an autonomous setting, however, some important questions must be answered before an algorithm implementation can be realized. First, the feasibility of a maneuver is addressed by analyzing the fundamental spacecraft relative dynamics. Particularly, a set of initial relative states is computed and visualized from which the desired rendezvous state can be reached (i.e., backward reachability analysis). Second, with the knowledge that a maneuver is feasible, the Model Predictive Control (MPC) framework is utilized to design a stabilizing feedback control law that optimizes performance and incorporates constraints such as control saturation limits and collision avoidance. The MPC algorithm offers a computationally efficient guidance strategy that could potentially be implemented in real-time on-board a spacecraft.http://archive.org/details/autonomousspacec1094560364Major, United States Air ForceApproved for public release; distribution is unlimited

    Dynamic Modeling, Design and Control of Wire-Borne Underactuated Brachiating Robots: Theory and Application

    Get PDF
    The ability of mobile robots to locomote safely in unstructured environments will be a cornerstone of robotics of the future. Introducing robots into fully unstructured environments is known to be a notoriously difficult problem in the robotics field. As a result, many of today's mobile robots are confined to prepared level surfaces in laboratory settings or relatively controlled environments only. One avenue for deploying mobile robots into unstructured settings is to utilize elevated wire networks. The research conducted under this thesis lays the groundwork for developing a new class of wire-borne underactuated robots that employs brachiation -- swinging like an ape -- as a means of locomotion on flexible cables. Executing safe brachiation maneuvers with a cable-suspended underactuated robot is a challenging problem due to the complications induced by the cable dynamics and vibrations. This thesis studies, from concept through experiments, the dynamic modeling techniques and control algorithms for wire-borne underactuated brachiating robots, to develop advanced locomotion strategies that enable the robots to perform energy-efficient and robust brachiation motions on flexible cables. High-fidelity and approximate dynamic models are derived for the robot-cable system, which provide the ability to model the interactions between the cable and the robot and to include the flexible cable dynamics in the control design. An optimal trajectory generation framework is presented in which the flexible cable dynamics are explicitly accounted for when designing the optimal swing trajectories. By employing a variety of control-theoretic methods such as robust and adaptive estimation, control Lyapunov and barrier functions, semidefinite programming and sum-of-squares optimization, a set of closed-loop control algorithms are proposed. A novel hardware brachiating robot design and embodiment are presented, which incorporate unique mechanical design features and provide a reliable testbed for experimental validation of the wire-borne underactuated brachiating robots. Extensive simulation results and hardware experiments demonstrate that the proposed multi-body dynamic models, trajectory optimization frameworks, and feedback control algorithms prove highly useful in real world settings and achieve reliable brachiation performance in the presence of uncertainties, disturbances, actuator limits and safety constraints.Ph.D

    Computing Viable Sets and Reachable Sets to Design Feedback Linearizing Control Laws Under Saturation

    No full text
    We consider feedback linearizable systems subject to bounded control input and nonlinear state constraints. In a single computation, we synthesize 1) parameterized nonlinear controllers based on feedback linearization, and 2) the set of states over which this controller is valid. This is accomplished through a reachability calculation, in which the state is extended to incorporate input parameters. While we use a Hamilton-Jacobi formulation, a viability approach is also feasible. The result provides a mathematical guarantee that for all states within the computed set, there exists a control law that simultaneously satisfy two separate goals: envelope protection (no violation of state constraints), and stabilization despite saturation. We apply this technique to two real-world systems: the longitudinal dynamics of a civil jet aircraft, and a two-aircraft, planar collision avoidance scenario. The result, in both cases, is a feasible range of input parameters for the nonlinear control law, and a corresponding controlled invariant set

    Accurate Step Length Control Strategies for Underactuated and Realistic Series Elastic Actuated Hoppers via High Order PFL

    Get PDF
    Among the different types of legged robots, hopping robots, aka hoppers, can be classified as one of the simplest sufficient models that capture the important features encompassed in dynamic locomotion: underactuation, compliance, and hybrid features. There is an abundance of work regarding the implementation of highly simplified hopper models, the prevalent example being the spring loaded inverted pendulum (SLIP) model, with the hopes of extracting fundamental control ideas for running and hopping robots. However, real world systems cannot be fully described by such simple models, as real actuators have their own dynamics including additional inertia and non-linear frictional losses. Additionally, implementing feedback control for hopping systems with significant amounts of compliance is difficult as the input variable does not instantaneously change the leg length acceleration. The current state-of-the-art of step length control in the presence of non-steady state motions required for foothold placement is not precise enough for operation in the real world. Therefore, an important step towards demonstrating high controllability and robustness to real-world elements is in providing accurate higher order models of real-world hopper dynamics, along with compatible control strategies. Our modeling work is based on a series-elastic actuated (SEA) hopping robot prototype constructed by our lab group, and we provide verifying hardware results that high order partial feedback linearization (HOPFL) can be implemented directly on the leg state of the robot. Using HOPFL, we investigate two paths of compatible trajectory generation that can accomplish desirable tasks such as precise foothold planning. We investigate the practicality of using SLIP-based trajectory generation techniques on more realistic hopping robots, and show that by implementing HOPFL directly on the robot's leg, we can make use of computationally fast SLIP-based approximations, account for non-trivial pitch dynamics, and improve the state-of-the-art of precision step length control for SEA hoppers. We also consider control strategies towards hoppers for which SLIP-based trajectories may not be compatible, by planning all ground reaction force vector (GRF) components during the stance phase concurrently, using a lower order and very general model to construct trajectories for the system's center of mass (CoM), and maintain body stability by controlling the orientation of the GRF directly. While not purely analytical as our SLIP-based approaches, this method is general enough to work on a variety of hopping robots that are not necessarily kinematically structured resembling the classical SLIP model

    Robust feedback model predictive control of norm-bounded uncertain systems

    Get PDF
    This thesis is concerned with the Robust Model Predictive Control (RMPC) of linear discrete-time systems subject to norm-bounded model-uncertainty, additive disturbances and hard constraints on the input and state. The aim is to design tractable, feedback RMPC algorithms that are based on linear matrix inequality (LMI) optimizations. The notion of feedback is very important in the RMPC control parameterization since it enables effective disturbance/uncertainty rejection and robust constraint satisfaction. However, treating the state-feedback gain as an optimization variable leads to non-convexity and nonlinearity in the RMPC scheme for norm-bounded uncertain systems. To address this problem, we propose three distinct state-feedback RMPC algorithms which are all based on (convex) LMI optimizations. In the first scheme, the aforementioned non-convexity is avoided by adopting a sequential approach based on the principles of Dynamic Programming. In particular, the feedback RMPC controller minimizes an upper-bound on the cost-to-go at each prediction step and incorporates the state/input constraints in a non-conservative manner. In the second RMPC algorithm, new results, based on slack variables, are proposed which help to obtain convexity at the expense of only minor conservatism. In the third and final approach, convexity is achieved by re-parameterizing, online, the norm-bounded uncertainty as a polytopic (additive) disturbance. All three RMPC schemes drive the uncertain-system state to a terminal invariant set which helps to establish Lyapunov stability and recursive feasibility. Low-complexity robust control invariant (LC-RCI) sets, when used as target sets, yield computational advantages for the associated RMPC schemes. A convex algorithm for the simultaneous computation of LC-RCI sets and the corresponding controller for norm-bounded uncertain systems is also presented. In this regard, two novel results to separate bilinear terms without conservatism are proposed. The results being general in nature also have application in other control areas. The computed LC-RCI sets are shown to have substantially improved volume as compared to other schemes in the literature. Finally, an output-feedback RMPC algorithm is also derived for norm-bounded uncertain systems. The proposed formulation uses a moving window of the past input/output data to generate (tight) bounds on the current state. These bounds are then used to compute an output-feedback RMPC control law using LMI optimizations. An output-feedback LC-RCI set is also designed, and serves as the terminal set in the algorithm.Open Acces
    corecore