689 research outputs found

    On the Complexity of Computing Minimal Unsatisfiable LTL formulas

    Full text link
    We show that (1) the Minimal False QCNF search-problem (MF-search) and the Minimal Unsatisfiable LTL formula search problem (MU-search) are FPSPACE complete because of the very expressive power of QBF/LTL, (2) we extend the PSPACE-hardness of the MF decision problem to the MU decision problem. As a consequence, we deduce a positive answer to the open question of PSPACE hardness of the inherent Vacuity Checking problem. We even show that the Inherent Non Vacuous formula search problem is also FPSPACE-complete.Comment: Minimal unsatisfiable cores For LTL causes inherent vacuity checking redundancy coverag

    Optimization Modulo Theories with Linear Rational Costs

    Full text link
    In the contexts of automated reasoning (AR) and formal verification (FV), important decision problems are effectively encoded into Satisfiability Modulo Theories (SMT). In the last decade efficient SMT solvers have been developed for several theories of practical interest (e.g., linear arithmetic, arrays, bit-vectors). Surprisingly, little work has been done to extend SMT to deal with optimization problems; in particular, we are not aware of any previous work on SMT solvers able to produce solutions which minimize cost functions over arithmetical variables. This is unfortunate, since some problems of interest require this functionality. In the work described in this paper we start filling this gap. We present and discuss two general procedures for leveraging SMT to handle the minimization of linear rational cost functions, combining SMT with standard minimization techniques. We have implemented the procedures within the MathSAT SMT solver. Due to the absence of competitors in the AR, FV and SMT domains, we have experimentally evaluated our implementation against state-of-the-art tools for the domain of linear generalized disjunctive programming (LGDP), which is closest in spirit to our domain, on sets of problems which have been previously proposed as benchmarks for the latter tools. The results show that our tool is very competitive with, and often outperforms, these tools on these problems, clearly demonstrating the potential of the approach.Comment: Submitted on january 2014 to ACM Transactions on Computational Logic, currently under revision. arXiv admin note: text overlap with arXiv:1202.140

    Unsatisfiable Linear CNF Formulas Are Large and Complex

    Get PDF
    We call a CNF formula linear if any two clauses have at most one variable in common. We show that there exist unsatisfiable linear k-CNF formulas with at most 4k^2 4^k clauses, and on the other hand, any linear k-CNF formula with at most 4^k/(8e^2k^2) clauses is satisfiable. The upper bound uses probabilistic means, and we have no explicit construction coming even close to it. One reason for this is that unsatisfiable linear formulas exhibit a more complex structure than general (non-linear) formulas: First, any treelike resolution refutation of any unsatisfiable linear k-CNF formula has size at least 2^(2^(k/2-1))$. This implies that small unsatisfiable linear k-CNF formulas are hard instances for Davis-Putnam style splitting algorithms. Second, if we require that the formula F have a strict resolution tree, i.e. every clause of F is used only once in the resolution tree, then we need at least a^a^...^a clauses, where a is approximately 2 and the height of this tower is roughly k.Comment: 12 pages plus a two-page appendix; corrected an inconsistency between title of the paper and title of the arxiv submissio

    On the van der Waerden numbers w(2;3,t)

    Get PDF
    We present results and conjectures on the van der Waerden numbers w(2;3,t) and on the new palindromic van der Waerden numbers pdw(2;3,t). We have computed the new number w(2;3,19) = 349, and we provide lower bounds for 20 <= t <= 39, where for t <= 30 we conjecture these lower bounds to be exact. The lower bounds for 24 <= t <= 30 refute the conjecture that w(2;3,t) <= t^2, and we present an improved conjecture. We also investigate regularities in the good partitions (certificates) to better understand the lower bounds. Motivated by such reglarities, we introduce *palindromic van der Waerden numbers* pdw(k; t_0,...,t_{k-1}), defined as ordinary van der Waerden numbers w(k; t_0,...,t_{k-1}), however only allowing palindromic solutions (good partitions), defined as reading the same from both ends. Different from the situation for ordinary van der Waerden numbers, these "numbers" need actually to be pairs of numbers. We compute pdw(2;3,t) for 3 <= t <= 27, and we provide lower bounds, which we conjecture to be exact, for t <= 35. All computations are based on SAT solving, and we discuss the various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver, the tawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver, but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory developed in the SAT handbook article of the second author).Comment: Second version 25 pages, updates of numerical data, improved formulations, and extended discussions on SAT. Third version 42 pages, with SAT solver data (especially for new SAT solver) and improved representation. Fourth version 47 pages, with updates and added explanation

    Strongly Refuting Random CSPs Below the Spectral Threshold

    Full text link
    Random constraint satisfaction problems (CSPs) are known to exhibit threshold phenomena: given a uniformly random instance of a CSP with nn variables and mm clauses, there is a value of m=Ω(n)m = \Omega(n) beyond which the CSP will be unsatisfiable with high probability. Strong refutation is the problem of certifying that no variable assignment satisfies more than a constant fraction of clauses; this is the natural algorithmic problem in the unsatisfiable regime (when m/n=ω(1)m/n = \omega(1)). Intuitively, strong refutation should become easier as the clause density m/nm/n grows, because the contradictions introduced by the random clauses become more locally apparent. For CSPs such as kk-SAT and kk-XOR, there is a long-standing gap between the clause density at which efficient strong refutation algorithms are known, m/nO~(nk/21)m/n \ge \widetilde O(n^{k/2-1}), and the clause density at which instances become unsatisfiable with high probability, m/n=ω(1)m/n = \omega (1). In this paper, we give spectral and sum-of-squares algorithms for strongly refuting random kk-XOR instances with clause density m/nO~(n(k/21)(1δ))m/n \ge \widetilde O(n^{(k/2-1)(1-\delta)}) in time exp(O~(nδ))\exp(\widetilde O(n^{\delta})) or in O~(nδ)\widetilde O(n^{\delta}) rounds of the sum-of-squares hierarchy, for any δ[0,1)\delta \in [0,1) and any integer k3k \ge 3. Our algorithms provide a smooth transition between the clause density at which polynomial-time algorithms are known at δ=0\delta = 0, and brute-force refutation at the satisfiability threshold when δ=1\delta = 1. We also leverage our kk-XOR results to obtain strong refutation algorithms for SAT (or any other Boolean CSP) at similar clause densities. Our algorithms match the known sum-of-squares lower bounds due to Grigoriev and Schonebeck, up to logarithmic factors. Additionally, we extend our techniques to give new results for certifying upper bounds on the injective tensor norm of random tensors

    On Matrices, Automata, and Double Counting

    Get PDF
    Matrix models are ubiquitous for constraint problems. Many such problems have a matrix of variables M, with the same constraint defined by a finite-state automaton A on each row of M and a global cardinality constraint gcc on each column of M. We give two methods for deriving, by double counting, necessary conditions on the cardinality variables of the gcc constraints from the automaton A. The first method yields linear necessary conditions and simple arithmetic constraints. The second method introduces the cardinality automaton, which abstracts the overall behaviour of all the row automata and can be encoded by a set of linear constraints. We evaluate the impact of our methods on a large set of nurse rostering problem instances
    corecore