457,720 research outputs found

    Real-Time, Dynamic Hardware Accelerators for BLAS Computation

    Get PDF
    This paper presents an approach to increasing the capability of scientific computing through the use of real-time, partially reconfigurable hardware accelerators that implement basic linear algebra subprograms (BLAS). The use of reconfigurable hardware accelerators for computing linear algebra functions has the potential to increase floating point computation while at the same time providing an architecture that minimizes data movement latency and increase power efficiency. While there has been significant work by the computing community to optimize BLAS routines at the software level, optimizing these routines in hardware using reconfigurable fabrics is in its infancy. This paper begins with a comprehensive overview of the history and evolution of BLAS for use in scientific computing. In the reviews current successes in using reconfigurable computing architectures achieve acceleration. It then presents an investigation of an accelerator approach with a granularity at the logic circuit level through real-time, partial reconfiguration of a programmable fabric with static accelerator cache memory to minimize data movement. Empirical data is presented for a study on a single-FPGA

    Design and semantics of form and movement (DeSForM 2006)

    Get PDF
    Design and Semantics of Form and Movement (DeSForM) grew from applied research exploring emerging design methods and practices to support new generation product and interface design. The products and interfaces are concerned with: the context of ubiquitous computing and ambient technologies and the need for greater empathy in the pre-programmed behaviour of the ‘machines’ that populate our lives. Such explorative research in the CfDR has been led by Young, supported by Kyffin, Visiting Professor from Philips Design and sponsored by Philips Design over a period of four years (research funding £87k). DeSForM1 was the first of a series of three conferences that enable the presentation and debate of international work within this field: • 1st European conference on Design and Semantics of Form and Movement (DeSForM1), Baltic, Gateshead, 2005, Feijs L., Kyffin S. & Young R.A. eds. • 2nd European conference on Design and Semantics of Form and Movement (DeSForM2), Evoluon, Eindhoven, 2006, Feijs L., Kyffin S. & Young R.A. eds. • 3rd European conference on Design and Semantics of Form and Movement (DeSForM3), New Design School Building, Newcastle, 2007, Feijs L., Kyffin S. & Young R.A. eds. Philips sponsorship of practice-based enquiry led to research by three teams of research students over three years and on-going sponsorship of research through the Northumbria University Design and Innovation Laboratory (nuDIL). Young has been invited on the steering panel of the UK Thinking Digital Conference concerning the latest developments in digital and media technologies. Informed by this research is the work of PhD student Yukie Nakano who examines new technologies in relation to eco-design textiles

    Emergence of Cloud Computing: An Institutional Innovation Perspective

    Get PDF
    Today’s global IT service industry is undergoing a collective movement toward cloud computing. This study draws upon the institutional theory to conceptualize the social processes surrounding the emergence of the global cloud computing market. Through a qualitative case study based on archives and interviews with a leading multinational IT service vendor, the research shows that as cloud computing gains increasing legitimacy as a new market category, the vendor develops a portfolio of strategies and leverages a political toolkit to respond to and shape the emergence and evolution of the market

    Bodily expressed emotion understanding through integrating Laban movement analysis

    Full text link
    Body movements carry important information about a person's emotions or mental state and are essential in daily communication. Enhancing the ability of machines to understand emotions expressed through body language can improve the communication of assistive robots with children and elderly users, provide psychiatric professionals with quantitative diagnostic and prognostic assistance, and aid law enforcement in identifying deception. This study develops a high-quality human motor element dataset based on the Laban Movement Analysis movement coding system and utilizes that to jointly learn about motor elements and emotions. Our long-term ambition is to integrate knowledge from computing, psychology, and performing arts to enable automated understanding and analysis of emotion and mental state through body language. This work serves as a launchpad for further research into recognizing emotions through analysis of human movement

    The Noetic Prism

    Get PDF
    Definitions of ‘knowledge’ and its relationships with ‘data’ and ‘information’ are varied, inconsistent and often contradictory. In particular the traditional hierarchy of data-information-knowledge and its various revisions do not stand up to close scrutiny. We suggest that the problem lies in a flawed analysis that sees data, information and knowledge as separable concepts that are transformed into one another through processing. We propose instead that we can describe collectively all of the materials of computation as ‘noetica’, and that the terms data, information and knowledge can be reconceptualised as late-binding, purpose-determined aspects of the same body of material. Changes in complexity of noetica occur due to value-adding through the imposition of three different principles: increase in aggregation (granularity), increase in set relatedness (shape), and increase in contextualisation through the formation of networks (scope). We present a new model in which granularity, shape and scope are seen as the three vertices of a triangular prism, and show that all value-adding through computation can be seen as movement within the prism space. We show how the conceptual framework of the noetic prism provides a new and comprehensive analysis of the foundations of computing and information systems, and how it can provide a fresh analysis of many of the common problems in the management of intellectual resources

    Calculation of mechanism motion using discrete time approach

    Get PDF
    This article describes a simple and easy to implement method for numerical computing of movement of general multibody mechanism. The method is suitable for two or three-dimensional space, rigid bodies and all types of kinematic joints. The main advantage of this method lies in the possibility of using very low discretization time step but with high computing performance due effective implementation. This approach has a positive effect to numerical stability, speed and resistance to discontinuous parameter changes. The usability of described method is verified through an experimental multibody system
    • …
    corecore