4,482 research outputs found

    Programmable neural logic

    Get PDF
    Circuits of threshold elements (Boolean input, Boolean output neurons) have been shown to be surprisingly powerful. Useful functions such as XOR, ADD and MULTIPLY can be implemented by such circuits more efficiently than by traditional AND/OR circuits. In view of that, we have designed and built a programmable threshold element. The weights are stored on polysilicon floating gates, providing long-term retention without refresh. The weight value is increased using tunneling and decreased via hot electron injection. A weight is stored on a single transistor allowing the development of dense arrays of threshold elements. A 16-input programmable neuron was fabricated in the standard 2 μm double-poly, analog process available from MOSIS. We also designed and fabricated the multiple threshold element introduced in [5]. It presents the advantage of reducing the area of the layout from O(n^2) to O(n); (n being the number of variables) for a broad class of Boolean functions, in particular symmetric Boolean functions such as PARITY. A long term goal of this research is to incorporate programmable single/multiple threshold elements, as building blocks in field programmable gate arrays

    Polynomials that Sign Represent Parity and Descartes' Rule of Signs

    Full text link
    A real polynomial P(X1,...,Xn)P(X_1,..., X_n) sign represents f:An{0,1}f: A^n \to \{0,1\} if for every (a1,...,an)An(a_1, ..., a_n) \in A^n, the sign of P(a1,...,an)P(a_1,...,a_n) equals (1)f(a1,...,an)(-1)^{f(a_1,...,a_n)}. Such sign representations are well-studied in computer science and have applications to computational complexity and computational learning theory. In this work, we present a systematic study of tradeoffs between degree and sparsity of sign representations through the lens of the parity function. We attempt to prove bounds that hold for any choice of set AA. We show that sign representing parity over {0,...,m1}n\{0,...,m-1\}^n with the degree in each variable at most m1m-1 requires sparsity at least mnm^n. We show that a tradeoff exists between sparsity and degree, by exhibiting a sign representation that has higher degree but lower sparsity. We show a lower bound of n(m2)+1n(m -2) + 1 on the sparsity of polynomials of any degree representing parity over {0,...,m1}n\{0,..., m-1\}^n. We prove exact bounds on the sparsity of such polynomials for any two element subset AA. The main tool used is Descartes' Rule of Signs, a classical result in algebra, relating the sparsity of a polynomial to its number of real roots. As an application, we use bounds on sparsity to derive circuit lower bounds for depth-two AND-OR-NOT circuits with a Threshold Gate at the top. We use this to give a simple proof that such circuits need size 1.5n1.5^n to compute parity, which improves the previous bound of 4/3n/2{4/3}^{n/2} due to Goldmann (1997). We show a tight lower bound of 2n2^n for the inner product function over {0,1}n×{0,1}n\{0,1\}^n \times \{0, 1\}^n.Comment: To appear in Computational Complexit

    Quantified Derandomization of Linear Threshold Circuits

    Full text link
    One of the prominent current challenges in complexity theory is the attempt to prove lower bounds for TC0TC^0, the class of constant-depth, polynomial-size circuits with majority gates. Relying on the results of Williams (2013), an appealing approach to prove such lower bounds is to construct a non-trivial derandomization algorithm for TC0TC^0. In this work we take a first step towards the latter goal, by proving the first positive results regarding the derandomization of TC0TC^0 circuits of depth d>2d>2. Our first main result is a quantified derandomization algorithm for TC0TC^0 circuits with a super-linear number of wires. Specifically, we construct an algorithm that gets as input a TC0TC^0 circuit CC over nn input bits with depth dd and n1+exp(d)n^{1+\exp(-d)} wires, runs in almost-polynomial-time, and distinguishes between the case that CC rejects at most 2n11/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n11/5d2^{n^{1-1/5d}} inputs. In fact, our algorithm works even when the circuit CC is a linear threshold circuit, rather than just a TC0TC^0 circuit (i.e., CC is a circuit with linear threshold gates, which are stronger than majority gates). Our second main result is that even a modest improvement of our quantified derandomization algorithm would yield a non-trivial algorithm for standard derandomization of all of TC0TC^0, and would consequently imply that NEXP⊈TC0NEXP\not\subseteq TC^0. Specifically, if there exists a quantified derandomization algorithm that gets as input a TC0TC^0 circuit with depth dd and n1+O(1/d)n^{1+O(1/d)} wires (rather than n1+exp(d)n^{1+\exp(-d)} wires), runs in time at most 2nexp(d)2^{n^{\exp(-d)}}, and distinguishes between the case that CC rejects at most 2n11/5d2^{n^{1-1/5d}} inputs and the case that CC accepts at most 2n11/5d2^{n^{1-1/5d}} inputs, then there exists an algorithm with running time 2n1Ω(1)2^{n^{1-\Omega(1)}} for standard derandomization of TC0TC^0.Comment: Changes in this revision: An additional result (a PRG for quantified derandomization of depth-2 LTF circuits); rewrite of some of the exposition; minor correction

    Tight Limits on Nonlocality from Nontrivial Communication Complexity; a.k.a. Reliable Computation with Asymmetric Gate Noise

    Full text link
    It has long been known that the existence of certain superquantum nonlocal correlations would cause communication complexity to collapse. The absurdity of a world in which any nonlocal binary function could be evaluated with a constant amount of communication in turn provides a tantalizing way to distinguish quantum mechanics from incorrect theories of physics; the statement "communication complexity is nontrivial" has even been conjectured to be a concise information-theoretic axiom for characterizing quantum mechanics. We directly address the viability of that perspective with two results. First, we exhibit a nonlocal game such that communication complexity collapses in any physical theory whose maximal winning probability exceeds the quantum value. Second, we consider the venerable CHSH game that initiated this line of inquiry. In that case, the quantum value is about 0.85 but it is known that a winning probability of approximately 0.91 would collapse communication complexity. We show that the 0.91 result is the best possible using a large class of proof strategies, suggesting that the communication complexity axiom is insufficient for characterizing CHSH correlations. Both results build on new insights about reliable classical computation. The first exploits our formalization of an equivalence between amplification and reliable computation, while the second follows from a rigorous determination of the threshold for reliable computation with formulas of noise-free XOR gates and ε\varepsilon-noisy AND gates.Comment: 64 pages, 6 figure
    corecore