2,566 research outputs found

    Counting Complexity for Reasoning in Abstract Argumentation

    Full text link
    In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.Comment: Extended version of a paper published at AAAI-1

    On the equivalence between logic programming semantics and argumentation semantics

    Get PDF
    This work has been supported by the National Research Fund, Luxembourg (LAAMI project), by the Engineering and Physical Sciences Research Council (EPSRC, UK), grant Ref. EP/J012084/1 (SAsSy project), by CNPq (Universal 2012 – Proc. 473110/2012-1), and by CNPq/CAPES (Casadinho/PROCAD 2011).Peer reviewedPreprin

    HoCHC: A Refutationally Complete and Semantically Invariant System of Higher-order Logic Modulo Theories

    Full text link
    We present a simple resolution proof system for higher-order constrained Horn clauses (HoCHC) - a system of higher-order logic modulo theories - and prove its soundness and refutational completeness w.r.t. the standard semantics. As corollaries, we obtain the compactness theorem and semi-decidability of HoCHC for semi-decidable background theories, and we prove that HoCHC satisfies a canonical model property. Moreover a variant of the well-known translation from higher-order to 1st-order logic is shown to be sound and complete for HoCHC in standard semantics. We illustrate how to transfer decidability results for (fragments of) 1st-order logic modulo theories to our higher-order setting, using as example the Bernays-Schonfinkel-Ramsey fragment of HoCHC modulo a restricted form of Linear Integer Arithmetic
    • …
    corecore