635 research outputs found

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks

    A Generic Framework for Implicate Generation Modulo Theories

    Get PDF
    International audienceThe clausal logical consequences of a formula are called its implicates. The generation of these implicates has several applications, such as the identification of missing hypotheses in a logical specification. We present a procedure that generates the implicates of a quantifier-free formula modulo a theory. No assumption is made on the considered theory, other than the existence of a decision procedure. The algorithm has been implemented (using the solvers MiniSAT, CVC4 and Z3) and experimental results show evidence of the practical relevance of the proposed approach

    Reason Maintenance - State of the Art

    Get PDF
    This paper describes state of the art in reason maintenance with a focus on its future usage in the KiWi project. To give a bigger picture of the field, it also mentions closely related issues such as non-monotonic logic and paraconsistency. The paper is organized as follows: first, two motivating scenarios referring to semantic wikis are presented which are then used to introduce the different reason maintenance techniques

    An Approach to Abductive Reasoning in Equational Logic

    No full text
    http://ijcai.org/papers13/contents.php - Posters: Constraints, Satisfiability, and Search (ijcai13.org)International audienceAbduction has been extensively studied in propositional logic because of its many applications in artificial intelligence. However, its intrinsic complexity has been a limitation to the implementation of abductive reasoning tools in more expressive logics. We have devised such a tool in ground flat equational logic, in which literals are equations or disequations between constants. Our tool is based on the computation of prime implicates. It uses a relaxed paramodulation calculus, designed to generate all prime implicates of a formula, together with a carefully defined data structure storing the implicates and able to efficiently detect, and remove, redundancies. In addition to a detailed description of this method, we present an analysis of some experimental results
    corecore