7,806 research outputs found

    On Polynomial Multiplication in Chebyshev Basis

    Full text link
    In a recent paper Lima, Panario and Wang have provided a new method to multiply polynomials in Chebyshev basis which aims at reducing the total number of multiplication when polynomials have small degree. Their idea is to use Karatsuba's multiplication scheme to improve upon the naive method but without being able to get rid of its quadratic complexity. In this paper, we extend their result by providing a reduction scheme which allows to multiply polynomial in Chebyshev basis by using algorithms from the monomial basis case and therefore get the same asymptotic complexity estimate. Our reduction allows to use any of these algorithms without converting polynomials input to monomial basis which therefore provide a more direct reduction scheme then the one using conversions. We also demonstrate that our reduction is efficient in practice, and even outperform the performance of the best known algorithm for Chebyshev basis when polynomials have large degree. Finally, we demonstrate a linear time equivalence between the polynomial multiplication problem under monomial basis and under Chebyshev basis

    Evaluating parametric holonomic sequences using rectangular splitting

    Full text link
    We adapt the rectangular splitting technique of Paterson and Stockmeyer to the problem of evaluating terms in holonomic sequences that depend on a parameter. This approach allows computing the nn-th term in a recurrent sequence of suitable type using O(n1/2)O(n^{1/2}) "expensive" operations at the cost of an increased number of "cheap" operations. Rectangular splitting has little overhead and can perform better than either naive evaluation or asymptotically faster algorithms for ranges of nn encountered in applications. As an example, fast numerical evaluation of the gamma function is investigated. Our work generalizes two previous algorithms of Smith.Comment: 8 pages, 2 figure

    Polynomial evaluation over finite fields: new algorithms and complexity bounds

    Full text link
    An efficient evaluation method is described for polynomials in finite fields. Its complexity is shown to be lower than that of standard techniques when the degree of the polynomial is large enough. Applications to the syndrome computation in the decoding of Reed-Solomon codes are highlighted.Comment: accepted for publication in Applicable Algebra in Engineering, Communication and Computing. The final publication will be available at springerlink.com. DOI: 10.1007/s00200-011-0160-

    Faster polynomial multiplication over finite fields

    Full text link
    Let p be a prime, and let M_p(n) denote the bit complexity of multiplying two polynomials in F_p[X] of degree less than n. For n large compared to p, we establish the bound M_p(n) = O(n log n 8^(log^* n) log p), where log^* is the iterated logarithm. This is the first known F\"urer-type complexity bound for F_p[X], and improves on the previously best known bound M_p(n) = O(n log n log log n log p)

    A hybrid approach to Fermi operator expansion

    Full text link
    In a recent paper we have suggested that the finite temperature density matrix can be computed efficiently by a combination of polynomial expansion and iterative inversion techniques. We present here significant improvements over this scheme. The original complex-valued formalism is turned into a purely real one. In addition, we use Chebyshev polynomials expansion and fast summation techniques. This drastically reduces the scaling of the algorithm with the width of the Hamiltonian spectrum, which is now of the order of the cubic root of such parameter. This makes our method very competitive for applications to ab-initio simulations, when high energy resolution is required.Comment: preprint of ICCMSE08 proceeding
    • …
    corecore