14,690 research outputs found

    Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression Recognition

    Full text link
    Facial micro-expression (ME) recognition has posed a huge challenge to researchers for its subtlety in motion and limited databases. Recently, handcrafted techniques have achieved superior performance in micro-expression recognition but at the cost of domain specificity and cumbersome parametric tunings. In this paper, we propose an Enriched Long-term Recurrent Convolutional Network (ELRCN) that first encodes each micro-expression frame into a feature vector through CNN module(s), then predicts the micro-expression by passing the feature vector through a Long Short-term Memory (LSTM) module. The framework contains two different network variants: (1) Channel-wise stacking of input data for spatial enrichment, (2) Feature-wise stacking of features for temporal enrichment. We demonstrate that the proposed approach is able to achieve reasonably good performance, without data augmentation. In addition, we also present ablation studies conducted on the framework and visualizations of what CNN "sees" when predicting the micro-expression classes.Comment: Published in Micro-Expression Grand Challenge 2018, Workshop of 13th IEEE Facial & Gesture 201

    Characterizing and Improving Stability in Neural Style Transfer

    Get PDF
    Recent progress in style transfer on images has focused on improving the quality of stylized images and speed of methods. However, real-time methods are highly unstable resulting in visible flickering when applied to videos. In this work we characterize the instability of these methods by examining the solution set of the style transfer objective. We show that the trace of the Gram matrix representing style is inversely related to the stability of the method. Then, we present a recurrent convolutional network for real-time video style transfer which incorporates a temporal consistency loss and overcomes the instability of prior methods. Our networks can be applied at any resolution, do not re- quire optical flow at test time, and produce high quality, temporally consistent stylized videos in real-time

    Beyond Short Snippets: Deep Networks for Video Classification

    Full text link
    Convolutional neural networks (CNNs) have been extensively applied for image recognition problems giving state-of-the-art results on recognition, detection, segmentation and retrieval. In this work we propose and evaluate several deep neural network architectures to combine image information across a video over longer time periods than previously attempted. We propose two methods capable of handling full length videos. The first method explores various convolutional temporal feature pooling architectures, examining the various design choices which need to be made when adapting a CNN for this task. The second proposed method explicitly models the video as an ordered sequence of frames. For this purpose we employ a recurrent neural network that uses Long Short-Term Memory (LSTM) cells which are connected to the output of the underlying CNN. Our best networks exhibit significant performance improvements over previously published results on the Sports 1 million dataset (73.1% vs. 60.9%) and the UCF-101 datasets with (88.6% vs. 88.0%) and without additional optical flow information (82.6% vs. 72.8%)

    Fully-Coupled Two-Stream Spatiotemporal Networks for Extremely Low Resolution Action Recognition

    Full text link
    A major emerging challenge is how to protect people's privacy as cameras and computer vision are increasingly integrated into our daily lives, including in smart devices inside homes. A potential solution is to capture and record just the minimum amount of information needed to perform a task of interest. In this paper, we propose a fully-coupled two-stream spatiotemporal architecture for reliable human action recognition on extremely low resolution (e.g., 12x16 pixel) videos. We provide an efficient method to extract spatial and temporal features and to aggregate them into a robust feature representation for an entire action video sequence. We also consider how to incorporate high resolution videos during training in order to build better low resolution action recognition models. We evaluate on two publicly-available datasets, showing significant improvements over the state-of-the-art.Comment: 9 pagers, 5 figures, published in WACV 201
    • …
    corecore