61,543 research outputs found

    OV Graphs Are (Probably) Hard Instances

    Get PDF
    © Josh Alman and Virginia Vassilevska Williams. A graph G on n nodes is an Orthogonal Vectors (OV) graph of dimension d if there are vectors v1, . . ., vn ∈ {0, 1}d such that nodes i and j are adjacent in G if and only if hvi, vji = 0 over Z. In this paper, we study a number of basic graph algorithm problems, except where one is given as input the vectors defining an OV graph instead of a general graph. We show that for each of the following problems, an algorithm solving it faster on such OV graphs G of dimension only d = O(log n) than in the general case would refute a plausible conjecture about the time required to solve sparse MAX-k-SAT instances: Determining whether G contains a triangle. More generally, determining whether G contains a directed k-cycle for any k ≥ 3. Computing the square of the adjacency matrix of G over Z or F2. Maintaining the shortest distance between two fixed nodes of G, or whether G has a perfect matching, when G is a dynamically updating OV graph. We also prove some complementary results about OV graphs. We show that any problem which is NP-hard on constant-degree graphs is also NP-hard on OV graphs of dimension O(log n), and we give two problems which can be solved faster on OV graphs than in general: Maximum Clique, and Online Matrix-Vector Multiplication

    The Complexity of Bisimulation and Simulation on Finite Systems

    Full text link
    In this paper the computational complexity of the (bi)simulation problem over restricted graph classes is studied. For trees given as pointer structures or terms the (bi)simulation problem is complete for logarithmic space or NC1^1, respectively. This solves an open problem from Balc\'azar, Gabarr\'o, and S\'antha. Furthermore, if only one of the input graphs is required to be a tree, the bisimulation (simulation) problem is contained in AC1^1 (LogCFL). In contrast, it is also shown that the simulation problem is P-complete already for graphs of bounded path-width
    • …
    corecore