4,432 research outputs found

    Approximating the Smallest Spanning Subgraph for 2-Edge-Connectivity in Directed Graphs

    Full text link
    Let GG be a strongly connected directed graph. We consider the following three problems, where we wish to compute the smallest strongly connected spanning subgraph of GG that maintains respectively: the 22-edge-connected blocks of GG (\textsf{2EC-B}); the 22-edge-connected components of GG (\textsf{2EC-C}); both the 22-edge-connected blocks and the 22-edge-connected components of GG (\textsf{2EC-B-C}). All three problems are NP-hard, and thus we are interested in efficient approximation algorithms. For \textsf{2EC-C} we can obtain a 3/23/2-approximation by combining previously known results. For \textsf{2EC-B} and \textsf{2EC-B-C}, we present new 44-approximation algorithms that run in linear time. We also propose various heuristics to improve the size of the computed subgraphs in practice, and conduct a thorough experimental study to assess their merits in practical scenarios

    Wiretapping a hidden network

    Full text link
    We consider the problem of maximizing the probability of hitting a strategically chosen hidden virtual network by placing a wiretap on a single link of a communication network. This can be seen as a two-player win-lose (zero-sum) game that we call the wiretap game. The value of this game is the greatest probability that the wiretapper can secure for hitting the virtual network. The value is shown to equal the reciprocal of the strength of the underlying graph. We efficiently compute a unique partition of the edges of the graph, called the prime-partition, and find the set of pure strategies of the hider that are best responses against every maxmin strategy of the wiretapper. Using these special pure strategies of the hider, which we call omni-connected-spanning-subgraphs, we define a partial order on the elements of the prime-partition. From the partial order, we obtain a linear number of simple two-variable inequalities that define the maxmin-polytope, and a characterization of its extreme points. Our definition of the partial order allows us to find all equilibrium strategies of the wiretapper that minimize the number of pure best responses of the hider. Among these strategies, we efficiently compute the unique strategy that maximizes the least punishment that the hider incurs for playing a pure strategy that is not a best response. Finally, we show that this unique strategy is the nucleolus of the recently studied simple cooperative spanning connectivity game

    Unit Interval Editing is Fixed-Parameter Tractable

    Full text link
    Given a graph~GG and integers k1k_1, k2k_2, and~k3k_3, the unit interval editing problem asks whether GG can be transformed into a unit interval graph by at most k1k_1 vertex deletions, k2k_2 edge deletions, and k3k_3 edge additions. We give an algorithm solving this problem in time 2O(klogk)(n+m)2^{O(k\log k)}\cdot (n+m), where k:=k1+k2+k3k := k_1 + k_2 + k_3, and n,mn, m denote respectively the numbers of vertices and edges of GG. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time O(4k(n+m))O(4^k \cdot (n + m)). Another result is an O(6k(n+m))O(6^k \cdot (n + m))-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time O(6kn6)O(6^k \cdot n^6).Comment: An extended abstract of this paper has appeared in the proceedings of ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an appendix is provided for a brief overview of related graph classe
    corecore