1,200 research outputs found

    Statistical-mechanical formulation of Lyapunov exponents

    Full text link
    We show how the Lyapunov exponents of a dynamic system can in general be expressed in terms of the free energy of a (non-Hermitian) quantum many-body problem. This puts their study as a problem of statistical mechanics, whose intuitive concepts and techniques of approximation can hence be borrowed.Comment: 10 pages, 3 figures, RevTex

    LP-VIcode: a program to compute a suite of variational chaos indicators

    Get PDF
    An important point in analysing the dynamics of a given stellar or planetary system is the reliable identification of the chaotic or regular behaviour of its orbits. We introduce here the program LP-VIcode, a fully operational code which efficiently computes a suite of ten variational chaos indicators for dynamical systems in any number of dimensions. The user may choose to simultaneously compute any number of chaos indicators among the following: the Lyapunov Exponents, the Mean Exponential Growth factor of Nearby Orbits, the Slope Estimation of the largest Lyapunov Characteristic Exponent, the Smaller ALignment Index, the Generalized ALignment Index, the Fast Lyapunov Indicator, the Othogonal Fast Lyapunov Indicator, the dynamical Spectra of Stretching Numbers, the Spectral Distance, and the Relative Lyapunov Indicator. They are combined in an efficient way, allowing the sharing of differential equations whenever this is possible, and the individual stopping of their computation when any of them saturates.Comment: 26 pages, 9 black-and-white figures. Accepted for publication in Astronomy and Computing (Elsevier

    Lyapunov Exponents of Two Stochastic Lorenz 63 Systems

    Full text link
    Two different types of perturbations of the Lorenz 63 dynamical system for Rayleigh-Benard convection by multiplicative noise -- called stochastic advection by Lie transport (SALT) noise and fluctuation-dissipation (FD) noise -- are found to produce qualitatively different effects, possibly because the total phase-space volume contraction rates are different. In the process of making this comparison between effects of SALT and FD noise on the Lorenz 63 system, a stochastic version of a robust deterministic numerical algorithm for obtaining the individual numerical Lyapunov exponents was developed. With this stochastic version of the algorithm, the value of the sum of the Lyapunov exponents for the FD noise was found to differ significantly from the value of the deterministic Lorenz 63 system, whereas the SALT noise preserves the Lorenz 63 value with high accuracy. The Lagrangian averaged version of the SALT equations (LA SALT) is found to yield a closed deterministic subsystem for the expected solutions which is found to be isomorphic to the original Lorenz 63 dynamical system. The solutions of the closed chaotic subsystem, in turn, drive a linear stochastic system for the fluctuations of the LA SALT solutions around their expected values.Comment: 19 pages, 4 figures, comments always welcome

    Do Finite-Size Lyapunov Exponents Detect Coherent Structures?

    Full text link
    Ridges of the Finite-Size Lyapunov Exponent (FSLE) field have been used as indicators of hyperbolic Lagrangian Coherent Structures (LCSs). A rigorous mathematical link between the FSLE and LCSs, however, has been missing. Here we prove that an FSLE ridge satisfying certain conditions does signal a nearby ridge of some Finite-Time Lyapunov Exponent (FTLE) field, which in turn indicates a hyperbolic LCS under further conditions. Other FSLE ridges violating our conditions, however, are seen to be false positives for LCSs. We also find further limitations of the FSLE in Lagrangian coherence detection, including ill-posedness, artificial jump-discontinuities, and sensitivity with respect to the computational time step.Comment: 22 pages, 7 figures, v3: corrects the z-axis labels of Fig. 2 (left) that appears in the version published in Chao

    Achieving synchronization in arrays of coupled differential systems with time-varying couplings

    Get PDF
    In this paper, we study complete synchronization of the complex dynamical networks described by linearly coupled ordinary differential equation systems (LCODEs). The coupling considered here is time-varying in both the network structure and the reaction dynamics. Inspired by our previous paper [6], the extended Hajnal diameter is introduced and used to measure the synchronization in a general differential system. Then we find that the Hajnal diameter of the linear system induced by the time-varying coupling matrix and the largest Lyapunov exponent of the synchronized system play the key roles in synchronization analysis of LCODEs with the identity inner coupling matrix. As an application, we obtain a general sufficient condition guaranteeing directed time-varying graph to reach consensus. Example with numerical simulation is provided to show the effectiveness the theoretical results.Comment: 22 pages, 4 figure

    Analysis of Round Off Errors with Reversibility Test as a Dynamical Indicator

    Full text link
    We compare the divergence of orbits and the reversibility error for discrete time dynamical systems. These two quantities are used to explore the behavior of the global error induced by round off in the computation of orbits. The similarity of results found for any system we have analysed suggests the use of the reversibility error, whose computation is straightforward since it does not require the knowledge of the exact orbit, as a dynamical indicator. The statistics of fluctuations induced by round off for an ensemble of initial conditions has been compared with the results obtained in the case of random perturbations. Significant differences are observed in the case of regular orbits due to the correlations of round off error, whereas the results obtained for the chaotic case are nearly the same. Both the reversibility error and the orbit divergence computed for the same number of iterations on the whole phase space provide an insight on the local dynamical properties with a detail comparable with other dynamical indicators based on variational methods such as the finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor of nearby orbits and the smaller alignment index. For 2D symplectic maps the differentiation between regular and chaotic regions is well full-filled. For 4D symplectic maps the structure of the resonance web as well as the nearby weakly chaotic regions are accurately described.Comment: International Journal of Bifurcation and Chaos, 201

    Stability Properties of 1-Dimensional Hamiltonian Lattices with Non-analytic Potentials

    Full text link
    We investigate the local and global dynamics of two 1-Dimensional (1D) Hamiltonian lattices whose inter-particle forces are derived from non-analytic potentials. In particular, we study the dynamics of a model governed by a "graphene-type" force law and one inspired by Hollomon's law describing "work-hardening" effects in certain elastic materials. Our main aim is to show that, although similarities with the analytic case exist, some of the local and global stability properties of non-analytic potentials are very different than those encountered in systems with polynomial interactions, as in the case of 1D Fermi-Pasta-Ulam-Tsingou (FPUT) lattices. Our approach is to study the motion in the neighborhood of simple periodic orbits representing continuations of normal modes of the corresponding linear system, as the number of particles NN and the total energy EE are increased. We find that the graphene-type model is remarkably stable up to escape energy levels where breakdown is expected, while the Hollomon lattice never breaks, yet is unstable at low energies and only attains stability at energies where the harmonic force becomes dominant. We suggest that, since our results hold for large NN, it would be interesting to study analogous phenomena in the continuum limit where 1D lattices become strings.Comment: Accepted for publication in the International Journal of Bifurcation and Chao

    Detecting chaos, determining the dimensions of tori and predicting slow diffusion in Fermi--Pasta--Ulam lattices by the Generalized Alignment Index method

    Full text link
    The recently introduced GALI method is used for rapidly detecting chaos, determining the dimensionality of regular motion and predicting slow diffusion in multi--dimensional Hamiltonian systems. We propose an efficient computation of the GALIk_k indices, which represent volume elements of kk randomly chosen deviation vectors from a given orbit, based on the Singular Value Decomposition (SVD) algorithm. We obtain theoretically and verify numerically asymptotic estimates of GALIs long--time behavior in the case of regular orbits lying on low--dimensional tori. The GALIk_k indices are applied to rapidly detect chaotic oscillations, identify low--dimensional tori of Fermi--Pasta--Ulam (FPU) lattices at low energies and predict weak diffusion away from quasiperiodic motion, long before it is actually observed in the oscillations.Comment: 10 pages, 5 figures, submitted for publication in European Physical Journal - Special Topics. Revised version: Small explanatory additions to the text and addition of some references. A small figure chang
    corecore