71 research outputs found

    Computing Linear Matrix Representations of Helton-Vinnikov Curves

    Full text link
    Helton and Vinnikov showed that every rigidly convex curve in the real plane bounds a spectrahedron. This leads to the computational problem of explicitly producing a symmetric (positive definite) linear determinantal representation for a given curve. We study three approaches to this problem: an algebraic approach via solving polynomial equations, a geometric approach via contact curves, and an analytic approach via theta functions. These are explained, compared, and tested experimentally for low degree instances.Comment: 19 pages, 3 figures, minor revisions; Mathematical Methods in Systems, Optimization and Control, Birkhauser, Base

    Determinantal representations of hyperbolic plane curves: An elementary approach

    Full text link
    If a real symmetric matrix of linear forms is positive definite at some point, then its determinant is a hyperbolic hypersurface. In 2007, Helton and Vinnikov proved a converse in three variables, namely that every hyperbolic plane curve has a definite real symmetric determinantal representation. The goal of this paper is to give a more concrete proof of a slightly weaker statement. Here we show that every hyperbolic plane curve has a definite determinantal representation with Hermitian matrices. We do this by relating the definiteness of a matrix to the real topology of its minors and extending a construction of Dixon from 1902. Like Helton and Vinnikov's theorem, this implies that every hyperbolic region in the plane is defined by a linear matrix inequality.Comment: 15 pages, 4 figures, minor revision

    Quartic Curves and Their Bitangents

    Get PDF
    A smooth quartic curve in the complex projective plane has 36 inequivalent representations as a symmetric determinant of linear forms and 63 representations as a sum of three squares. These correspond to Cayley octads and Steiner complexes respectively. We present exact algorithms for computing these objects from the 28 bitangents. This expresses Vinnikov quartics as spectrahedra and positive quartics as Gram matrices. We explore the geometry of Gram spectrahedra and we find equations for the variety of Cayley octads. Interwoven is an exposition of much of the 19th century theory of plane quartics.Comment: 26 pages, 3 figures, added references, fixed theorems 4.3 and 7.8, other minor change

    LMI Representations of Convex Semialgebraic Sets and Determinantal Representations of Algebraic Hypersurfaces: Past, Present, and Future

    Full text link
    10 years ago or so Bill Helton introduced me to some mathematical problems arising from semidefinite programming. This paper is a partial account of what was and what is happening with one of these problems, including many open questions and some new results

    Semidefinite Representation of the kk-Ellipse

    Full text link
    The kk-ellipse is the plane algebraic curve consisting of all points whose sum of distances from kk given points is a fixed number. The polynomial equation defining the kk-ellipse has degree 2k2^k if kk is odd and degree 2k−(kk/2)2^k{-}\binom{k}{k/2} if kk is even. We express this polynomial equation as the determinant of a symmetric matrix of linear polynomials. Our representation extends to weighted kk-ellipses and kk-ellipsoids in arbitrary dimensions, and it leads to new geometric applications of semidefinite programming.Comment: 16 pages, 5 figure
    • …
    corecore