410 research outputs found

    PrimerStation: a highly specific multiplex genomic PCR primer design server for the human genome

    Get PDF
    PrimerStation () is a web service that calculates primer sets guaranteeing high specificity against the entire human genome. To achieve high accuracy, we used the hybridization ratio of primers in liquid solution. Calculating the status of sequence hybridization in terms of the stringent hybridization ratio is computationally costly, and no web service checks the entire human genome and returns a highly specific primer set calculated using a precise physicochemical model. To shorten the response time, we precomputed candidates for specific primers using a massively parallel computer with 100 CPUs (SunFire 15 K) about 3 months in advance. This enables PrimerStation to search and output qualified primers interactively. PrimerStation can select highly specific primers suitable for multiplex PCR by seeking a wider temperature range that minimizes the possibility of cross-reaction. It also allows users to add heuristic rules to the primer design, e.g. the exclusion of single nucleotide polymorphisms (SNPs) in primers, the avoidance of poly(A) and CA-repeats in the PCR products, and the elimination of defective primers using the secondary structure prediction. We performed several tests to verify the PCR amplification of randomly selected primers for ChrX, and we confirmed that the primers amplify specific PCR products perfectly

    Complete Configuration Space Analysis for Structure Determination of Symmetric Homo-oligomers by NMR

    Get PDF
    Symmetric homo-oligomers (protein complexes with similar subunits arranged symmetrically) play pivotal roles in complex biological processes such as ion transport and cellular regulation. Structure determination of these complexes is necessary in order to gain valuable insights into their mechanisms. Nuclear Magnetic Resonance (NMR) spectroscopy is an experimental technique used for structural studies of such complexes. The data available for structure determination of symmetric homo-oligomers by NMR is often sparse and ambiguous in nature, raising concerns about existing heuristic approaches for structure determination. We have developed an approach that is complete in that it identifies all consistent conformations, data-driven in that it separately evaluates the consistency of structures to data and biophysical constraints and efficient in that it avoids explicit consideration of each of the possible structures separately. By being complete, we ensure that native conformations are not missed. By being data-driven, we are able to separately quantify the information content in the data alone versus data and biophysical modeling. We take a configuration space (degree-of-freedom) approach that provides a compact representation of the conformation space and enables us to efficiently explore the space of possible conformations. This thesis demonstrates that the configuration space-based method is robust to sparsity and ambiguity in the data and enables complete, data-driven and efficient structure determination of symmetric homo-oligomers

    Design of Experiments

    Get PDF
    This book is a research publication that covers original research on developments within the Design of Experiments - Applications field of study. The book is a collection of reviewed scholarly contributions written by different authors and edited by Dr. Messias Borges Silva. Each scholarly contribution represents a chapter and each chapter is complete in itself but related to the major topics and objectives. The target audience comprises scholars and specialists in the field

    Simulating Open Quantum System Dynamics on NISQ Computers with Generalized Quantum Master Equations

    Full text link
    We present a quantum algorithm based on the Generalized Quantum Master Equation (GQME) approach to simulate open quantum system dynamics on noisy intermediate-scale quantum (NISQ) computers. This approach overcomes the limitations of the Lindblad equation, which assumes weak system-bath coupling and Markovity, by providing a rigorous derivation of the equations of motion for any subset of elements of the reduced density matrix. The memory kernel resulting from the effect of the remaining degrees of freedom is used as input to calculate the corresponding non-unitary propagator. We demonstrate how the Sz.-Nagy dilation theorem can be employed to transform the non-unitary propagator into a unitary one in a higher-dimensional Hilbert space, which can then be implemented on quantum circuits of NISQ computers. We validate our quantum algorithm as applied to the spin-boson benchmark model by analyzing the impact of the quantum circuit depth on the accuracy of the results when the subset is limited to the diagonal elements of the reduced density matrix. Our findings demonstrate that our approach yields reliable results on NISQ IBM computers.Comment: 47 pages, 10 figures, updated to the most current version of the manuscrip

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases

    Get PDF
    Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relation-ships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% ac-curacy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    • …
    corecore