2,767 research outputs found

    Complexity Theory, Game Theory, and Economics: The Barbados Lectures

    Full text link
    This document collects the lecture notes from my mini-course "Complexity Theory, Game Theory, and Economics," taught at the Bellairs Research Institute of McGill University, Holetown, Barbados, February 19--23, 2017, as the 29th McGill Invitational Workshop on Computational Complexity. The goal of this mini-course is twofold: (i) to explain how complexity theory has helped illuminate several barriers in economics and game theory; and (ii) to illustrate how game-theoretic questions have led to new and interesting complexity theory, including recent several breakthroughs. It consists of two five-lecture sequences: the Solar Lectures, focusing on the communication and computational complexity of computing equilibria; and the Lunar Lectures, focusing on applications of complexity theory in game theory and economics. No background in game theory is assumed.Comment: Revised v2 from December 2019 corrects some errors in and adds some recent citations to v1 Revised v3 corrects a few typos in v

    Computing Approximate Nash Equilibria in Polymatrix Games

    Full text link
    In an ϵ\epsilon-Nash equilibrium, a player can gain at most ϵ\epsilon by unilaterally changing his behaviour. For two-player (bimatrix) games with payoffs in [0,1][0,1], the best-knownϵ\epsilon achievable in polynomial time is 0.3393. In general, for nn-player games an ϵ\epsilon-Nash equilibrium can be computed in polynomial time for an ϵ\epsilon that is an increasing function of nn but does not depend on the number of strategies of the players. For three-player and four-player games the corresponding values of ϵ\epsilon are 0.6022 and 0.7153, respectively. Polymatrix games are a restriction of general nn-player games where a player's payoff is the sum of payoffs from a number of bimatrix games. There exists a very small but constant ϵ\epsilon such that computing an ϵ\epsilon-Nash equilibrium of a polymatrix game is \PPAD-hard. Our main result is that a (0.5+δ)(0.5+\delta)-Nash equilibrium of an nn-player polymatrix game can be computed in time polynomial in the input size and 1δ\frac{1}{\delta}. Inspired by the algorithm of Tsaknakis and Spirakis, our algorithm uses gradient descent on the maximum regret of the players. We also show that this algorithm can be applied to efficiently find a (0.5+δ)(0.5+\delta)-Nash equilibrium in a two-player Bayesian game

    Query Complexity of Approximate Equilibria in Anonymous Games

    Full text link
    We study the computation of equilibria of anonymous games, via algorithms that may proceed via a sequence of adaptive queries to the game's payoff function, assumed to be unknown initially. The general topic we consider is \emph{query complexity}, that is, how many queries are necessary or sufficient to compute an exact or approximate Nash equilibrium. We show that exact equilibria cannot be found via query-efficient algorithms. We also give an example of a 2-strategy, 3-player anonymous game that does not have any exact Nash equilibrium in rational numbers. However, more positive query-complexity bounds are attainable if either further symmetries of the utility functions are assumed or we focus on approximate equilibria. We investigate four sub-classes of anonymous games previously considered by \cite{bfh09, dp14}. Our main result is a new randomized query-efficient algorithm that finds a O(n1/4)O(n^{-1/4})-approximate Nash equilibrium querying O~(n3/2)\tilde{O}(n^{3/2}) payoffs and runs in time O~(n3/2)\tilde{O}(n^{3/2}). This improves on the running time of pre-existing algorithms for approximate equilibria of anonymous games, and is the first one to obtain an inverse polynomial approximation in poly-time. We also show how this can be utilized as an efficient polynomial-time approximation scheme (PTAS). Furthermore, we prove that Ω(nlogn)\Omega(n \log{n}) payoffs must be queried in order to find any ϵ\epsilon-well-supported Nash equilibrium, even by randomized algorithms

    Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

    Get PDF
    In an epsilon-approximate Nash equilibrium, a player can gain at most epsilon in expectation by unilateral deviation. An epsilon well-supported approximate Nash equilibrium has the stronger requirement that every pure strategy used with positive probability must have payoff within epsilon of the best response payoff. Daskalakis, Mehta and Papadimitriou conjectured that every win-lose bimatrix game has a 2/3-well-supported Nash equilibrium that uses supports of cardinality at most three. Indeed, they showed that such an equilibrium will exist subject to the correctness of a graph-theoretic conjecture. Regardless of the correctness of this conjecture, we show that the barrier of a 2/3 payoff guarantee cannot be broken with constant size supports; we construct win-lose games that require supports of cardinality at least Omega((log n)^(1/3)) in any epsilon-well supported equilibrium with epsilon < 2/3. The key tool in showing the validity of the construction is a proof of a bipartite digraph variant of the well-known Caccetta-Haggkvist conjecture. A probabilistic argument shows that there exist epsilon-well-supported equilibria with supports of cardinality O(log n/(epsilon^2)), for any epsilon> 0; thus, the polylogarithmic cardinality bound presented cannot be greatly improved. We also show that for any delta > 0, there exist win-lose games for which no pair of strategies with support sizes at most two is a (1-delta)-well-supported Nash equilibrium. In contrast, every bimatrix game with payoffs in [0,1] has a 1/2-approximate Nash equilibrium where the supports of the players have cardinality at most two.Comment: Added details on related work (footnote 7 expanded
    corecore