7 research outputs found

    Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number

    Get PDF
    We investigate the locality number, a recently introduced structural parameter for strings (with applications in pattern matching with variables), and its connection to two important graph-parameters, cutwidth and pathwidth. These connections allow us to show that computing the locality number is NP-hard but fixed-parameter tractable (when the locality number or the alphabet size is treated as a parameter), and can be approximated with ratio O(sqrt{log{opt}} log n). As a by-product, we also relate cutwidth via the locality number to pathwidth, which is of independent interest, since it improves the best currently known approximation algorithm for cutwidth. In addition to these main results, we also consider the possibility of greedy-based approximation algorithms for the locality number

    Treewidth : structural properties and algorithmic insights

    Get PDF

    Merge-and-shrink abstractions for classical planning : theory, strategies, and implementation

    Get PDF
    Classical planning is the problem of finding a sequence of deterministic actions in a state space that lead from an initial state to a state satisfying some goal condition. The dominant approach to optimally solve planning tasks is heuristic search, in particular A* search combined with an admissible heuristic. While there exist many different admissible heuristics, we focus on abstraction heuristics in this thesis, and in particular, on the well-established merge-and-shrink heuristics. Our main theoretical contribution is to provide a comprehensive description of the merge-and-shrink framework in terms of transformations of transition systems. Unlike previous accounts, our description is fully compositional, i.e. can be understood by understanding each transformation in isolation. In particular, in addition to the name-giving merge and shrink transformations, we also describe pruning and label reduction as such transformations. The latter is based on generalized label reduction, a new theory that removes all of the restrictions of the previous definition of label reduction. We study the four types of transformations in terms of desirable formal properties and explain how these properties transfer to heuristics being admissible and consistent or even perfect. We also describe an optimized implementation of the merge-and-shrink framework that substantially improves the efficiency compared to previous implementations. Furthermore, we investigate the expressive power of merge-and-shrink abstractions by analyzing factored mappings, the data structure they use for representing functions. In particular, we show that there exist certain families of functions that can be compactly represented by so-called non-linear factored mappings but not by linear ones. On the practical side, we contribute several non-linear merge strategies to the merge-and-shrink toolbox. In particular, we adapt a merge strategy from model checking to planning, provide a framework to enhance existing merge strategies based on symmetries, devise a simple score-based merge strategy that minimizes the maximum size of transition systems of the merge-and-shrink computation, and describe another framework to enhance merge strategies based on an analysis of causal dependencies of the planning task. In a large experimental study, we show the evolution of the performance of merge-and-shrink heuristics on planning benchmarks. Starting with the state of the art before the contributions of this thesis, we subsequently evaluate all of our techniques and show that state-of-the-art non-linear merge-and-shrink heuristics improve significantly over the previous state of the art

    Novel Techniques for the Zero-Forcing and p-Median Graph Location Problems

    Get PDF
    This thesis presents new methods for solving two graph location problems, the p-Median problem and the zero-forcing problem. For the p-median problem, I present a branch decomposition based method that finds the best p-median solution that is limited to some input support graph. The algorithm can be used to either find an integral solution from a fractional linear programming solution, or it can be used to improve on the solutions given by a pool of heuristics. In either use, the algorithm compares favorably in running time or solution quality to state-of-the-art heuristics. For the zero-forcing problem, this thesis gives both theoretical and computational results. In the theoretical section, I show that the branchwidth of a graph is a lower bound on its zero-forcing number, and I introduce new bounds on the zero-forcing iteration index for cubic graphs. This thesis also introduces a special type of graph structure, a zero-forcing fort, that provides a powerful tool for the analysis and modeling of zero-forcing problems. In the computational section, I introduce multiple integer programming models for finding minimum zero-forcing sets and integer programming and combinatorial branch and bound methods for finding minimum connected zero-forcing sets. While the integer programming methods do not perform better than the best combinatorial method for the basic zero-forcing problem, they are easily adapted to the connected zero-forcing problem, and they are the best methods for the connected zero-forcing problem

    Solving two-stage stochastic network design problems to optimality

    Get PDF
    The Steiner tree problem (STP) is a central and well-studied graph-theoretical combinatorial optimization problem which plays an important role in various applications. It can be stated as follows: Given a weighted graph and a set of terminal vertices, find a subset of edges which connects the terminals at minimum cost. However, in real-world applications the input data might not be given with certainty or it might depend on future decisions. For the STP, for example, edge costs representing the costs of establishing links may be subject to inflations and price deviations. In this thesis we tackle data uncertainty by using the concept of stochastic programming and we study the two-stage stochastic version of the Steiner tree problem (SSTP). Thereby, a set of scenarios defines the possible outcomes of a random variable; each scenario is given by its realization probability and defines a set of terminals and edge costs. A feasible solution consists of a subset of edges in the first stage and edge subsets for all scenarios (second stage) such that each terminal set is connected. The objective is to find a solution that minimizes the expected cost. We consider two approaches for solving the SSTP to optimality: combinatorial algorithms, in particular fixed-parameter tractable (FPT) algorithms, and methods from mathematical programming. Regarding the combinatorial algorithms we develop a linear-time algorithm for trees, an FPT algorithm parameterized by the number of terminals, and we consider treewidth-bounded graphs where we give the first FPT algorithm parameterized by the combination of treewidth and number of scenarios. The second approach is based on deriving strong integer programming (IP) formulations for the SSTP. By using orientation properties we introduce new semi-directed cut- and flow-based IP formulations which are shown to be stronger than the undirected models from the literature. To solve these models to optimality we use a decomposition-based two-stage branch&cut algorithm, which is improved by a fast and efficient method for strengthening the optimality cuts. Moreover, we develop new and stronger integer optimality cuts. The computational performance is evaluated in a comprehensive computational study, which shows the superiority of the new formulations, the benefit of the decomposition, and the advantage of using the strengthened optimality cuts. The Steiner forest problem (SFP) is a related problem where sets of terminals need to be connected. On the one hand, the SFP is a generalization of the STP and on the other hand, we show that the SFP is a special case of the SSTP. Therefore, our results are transferable to the SFP and we present the first FPT algorithm for treewidth-bounded graphs and we model new and stronger (semi-)directed cut- and flow-based IP formulations for the SFP. In the second part of this thesis we consider the two-stage stochastic survivable network design problem, an extension of the SSTP where pairs of vertices may demand a higher connectivity. Similarly to the first part we introduce new and stronger semi-directed cut-based models, apply the same decomposition along with the cut strengthening technique, and argue the validity of the newly introduced integer optimality cuts. A computational study shows the benefit, robustness, and good performance of the decomposition and the cut strengthening method
    corecore