16,036 research outputs found

    Computing Covers Using Prefix Tables

    Get PDF
    An \emph{indeterminate string} x=x[1..n]x = x[1..n] on an alphabet Σ\Sigma is a sequence of nonempty subsets of Σ\Sigma; xx is said to be \emph{regular} if every subset is of size one. A proper substring uu of regular xx is said to be a \emph{cover} of xx iff for every i∈1..ni \in 1..n, an occurrence of uu in xx includes x[i]x[i]. The \emph{cover array} γ=γ[1..n]\gamma = \gamma[1..n] of xx is an integer array such that γ[i]\gamma[i] is the longest cover of x[1..i]x[1..i]. Fifteen years ago a complex, though nevertheless linear-time, algorithm was proposed to compute the cover array of regular xx based on prior computation of the border array of xx. In this paper we first describe a linear-time algorithm to compute the cover array of regular string xx based on the prefix table of xx. We then extend this result to indeterminate strings.Comment: 14 pages, 1 figur

    Forwarding Tables Verification through Representative Header Sets

    Get PDF
    Forwarding table verification consists in checking the distributed data-structure resulting from the forwarding tables of a network. A classical concern is the detection of loops. We study this problem in the context of software-defined networking (SDN) where forwarding rules can be arbitrary bitmasks (generalizing prefix matching) and where tables are updated by a centralized controller. Basic verification problems such as loop detection are NP-hard and most previous work solves them with heuristics or SAT solvers. We follow a different approach based on computing a representation of the header classes, i.e. the sets of headers that match the same rules. This representation consists in a collection of representative header sets, at least one for each class, and can be computed centrally in time which is polynomial in the number of classes. Classical verification tasks can then be trivially solved by checking each representative header set. In general, the number of header classes can increase exponentially with header length, but it remains polynomial in the number of rules in the practical case where rules are constituted with predefined fields where exact, prefix matching or range matching is applied in each field (e.g., IP/MAC addresses, TCP/UDP ports). We propose general techniques that work in polynomial time as long as the number of classes of headers is polynomial and that do not make specific assumptions about the structure of the sets associated to rules. The efficiency of our method rely on the fact that the data-structure representing rules allows efficient computation of intersection, cardinal and inclusion. Finally, we propose an algorithm to maintain such representation in presence of updates (i.e., rule insert/update/removal). We also provide a local distributed algorithm for checking the absence of black-holes and a proof labeling scheme for locally checking the absence of loops

    Comprehending Kademlia Routing - A Theoretical Framework for the Hop Count Distribution

    Full text link
    The family of Kademlia-type systems represents the most efficient and most widely deployed class of internet-scale distributed systems. Its success has caused plenty of large scale measurements and simulation studies, and several improvements have been introduced. Its character of parallel and non-deterministic lookups, however, so far has prevented any concise formal analysis. This paper introduces the first comprehensive formal model of the routing of the entire family of systems that is validated against previous measurements. It sheds light on the overall hop distribution and lookup delays of the different variations of the original protocol. It additionally shows that several of the recent improvements to the protocol in fact have been counter-productive and identifies preferable designs with regard to routing overhead and resilience.Comment: 12 pages, 6 figure

    Linear-Space Data Structures for Range Mode Query in Arrays

    Full text link
    A mode of a multiset SS is an element a∈Sa \in S of maximum multiplicity; that is, aa occurs at least as frequently as any other element in SS. Given a list A[1:n]A[1:n] of nn items, we consider the problem of constructing a data structure that efficiently answers range mode queries on AA. Each query consists of an input pair of indices (i,j)(i, j) for which a mode of A[i:j]A[i:j] must be returned. We present an O(n2−2ϵ)O(n^{2-2\epsilon})-space static data structure that supports range mode queries in O(nϵ)O(n^\epsilon) time in the worst case, for any fixed ϵ∈[0,1/2]\epsilon \in [0,1/2]. When ϵ=1/2\epsilon = 1/2, this corresponds to the first linear-space data structure to guarantee O(n)O(\sqrt{n}) query time. We then describe three additional linear-space data structures that provide O(k)O(k), O(m)O(m), and O(∣j−i∣)O(|j-i|) query time, respectively, where kk denotes the number of distinct elements in AA and mm denotes the frequency of the mode of AA. Finally, we examine generalizing our data structures to higher dimensions.Comment: 13 pages, 2 figure
    • …
    corecore