301 research outputs found

    Phylogenetic incongruence through the lens of Monadic Second Order logic

    Get PDF
    International audienceWithin the field of phylogenetics there is growing interest in measures for summarising the dissimilarity, or incongruence, of two or more phylogenetic trees. Many of these measures are NP-hard to compute and this has stimulated a considerable volume of research into fixed parameter tractable algorithms. In this article we use Monadic Second Order logic to give alternative, compact proofs of fixed parameter tractability for several well-known incongruence measures. In doing so we wish to demonstrate the considerable potential of MSOL - machinery still largely unknown outside the algorithmic graph theory community - within phylogenetics. A crucial component of this work is the observation that many measures, when bounded, imply the existence of an agreement forest of bounded size, which in turn implies that an auxiliary graph structure, the display graph, has bounded treewidth. It is this bound on treewidth that makes the machinery of MSOL available for proving fixed parameter tractability

    Reconstructing pedigrees: some identifiability questions for a recombination-mutation model

    Full text link
    Pedigrees are directed acyclic graphs that represent ancestral relationships between individuals in a population. Based on a schematic recombination process, we describe two simple Markov models for sequences evolving on pedigrees - Model R (recombinations without mutations) and Model RM (recombinations with mutations). For these models, we ask an identifiability question: is it possible to construct a pedigree from the joint probability distribution of extant sequences? We present partial identifiability results for general pedigrees: we show that when the crossover probabilities are sufficiently small, certain spanning subgraph sequences can be counted from the joint distribution of extant sequences. We demonstrate how pedigrees that earlier seemed difficult to distinguish are distinguished by counting their spanning subgraph sequences.Comment: 40 pages, 9 figure

    Embedding Phylogenetic Trees in Networks of Low Treewidth

    Get PDF
    Given a rooted, binary phylogenetic network and a rooted, binary phylogenetic tree, can the tree be embedded into the network? This problem, called Tree Containment, arises when validating networks constructed by phylogenetic inference methods. We present the first algorithm for (rooted) Tree Containment using the treewidth t of the input network N as parameter, showing that the problem can be solved in 2O(t2) |N| time and space.Optimizatio

    Computing Optimal Leaf Roots of Chordal Cographs in Linear Time

    Full text link
    A graph G is a k-leaf power, for an integer k >= 2, if there is a tree T with leaf set V(G) such that, for all vertices x, y in V(G), the edge xy exists in G if and only if the distance between x and y in T is at most k. Such a tree T is called a k-leaf root of G. The computational problem of constructing a k-leaf root for a given graph G and an integer k, if any, is motivated by the challenge from computational biology to reconstruct phylogenetic trees. For fixed k, Lafond [SODA 2022] recently solved this problem in polynomial time. In this paper, we propose to study optimal leaf roots of graphs G, that is, the k-leaf roots of G with minimum k value. Thus, all k'-leaf roots of G satisfy k <= k'. In terms of computational biology, seeking optimal leaf roots is more justified as they yield more probable phylogenetic trees. Lafond's result does not imply polynomial-time computability of optimal leaf roots, because, even for optimal k-leaf roots, k may (exponentially) depend on the size of G. This paper presents a linear-time construction of optimal leaf roots for chordal cographs (also known as trivially perfect graphs). Additionally, it highlights the importance of the parity of the parameter k and provides a deeper insight into the differences between optimal k-leaf roots of even versus odd k. Keywords: k-leaf power, k-leaf root, optimal k-leaf root, trivially perfect leaf power, chordal cographComment: 22 pages, 2 figures, full version of the FCT 2023 pape

    Polynomial kernels for 3-leaf power graph modification problems

    Full text link
    A graph G=(V,E) is a 3-leaf power iff there exists a tree T whose leaves are V and such that (u,v) is an edge iff u and v are at distance at most 3 in T. The 3-leaf power graph edge modification problems, i.e. edition (also known as the closest 3-leaf power), completion and edge-deletion, are FTP when parameterized by the size of the edge set modification. However polynomial kernel was known for none of these three problems. For each of them, we provide cubic kernels that can be computed in linear time for each of these problems. We thereby answer an open problem first mentioned by Dom, Guo, Huffner and Niedermeier (2005).Comment: Submitte

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Probability, Trees and Algorithms

    Get PDF
    The subject of this workshop were probabilistic aspects of algorithms for fundamental problems such as sorting, searching, selecting of and within data, random permutations, algorithms based on combinatorial trees or search trees, continuous limits of random trees and random graphs as well as random geometric graphs. The deeper understanding of the complexity of such algorithms and of shape characteristics of large discrete structures require probabilistic models and an asymptotic analysis of random discrete structures. The talks of this workshop focused on probabilistic, combinatorial and analytic techniques to study asymptotic properties of large random combinatorial structures
    • …
    corecore