6,844 research outputs found

    Modeling and evolving biochemical networks: insights into communication and computation from the biological domain

    Get PDF
    This paper is concerned with the modeling and evolving of Cell Signaling Networks (CSNs) in silico. CSNs are complex biochemical networks responsible for the coordination of cellular activities. We examine the possibility to computationally evolve and simulate Artificial Cell Signaling Networks (ACSNs) by means of Evolutionary Computation techniques. From a practical point of view, realizing and evolving ACSNs may provide novel computational paradigms for a variety of application areas. For example, understanding some inherent properties of CSNs such as crosstalk may be of interest: A potential benefit of engineering crosstalking systems is that it allows the modification of a specific process according to the state of other processes in the system. This is clearly necessary in order to achieve complex control tasks. This work may also contribute to the biological understanding of the origins and evolution of real CSNs. An introduction to CSNs is first provided, in which we describe the potential applications of modeling and evolving these biochemical networks in silico. We then review the different classes of techniques to model CSNs, this is followed by a presentation of two alternative approaches employed to evolve CSNs within the ESIGNET project. Results obtained with these methods are summarized and discussed

    Tropical geometries and dynamics of biochemical networks. Application to hybrid cell cycle models

    Full text link
    We use the Litvinov-Maslov correspondence principle to reduce and hybridize networks of biochemical reactions. We apply this method to a cell cycle oscillator model. The reduced and hybridized model can be used as a hybrid model for the cell cycle. We also propose a practical recipe for detecting quasi-equilibrium QE reactions and quasi-steady state QSS species in biochemical models with rational rate functions and use this recipe for model reduction. Interestingly, the QE/QSS invariant manifold of the smooth model and the reduced dynamics along this manifold can be put into correspondence to the tropical variety of the hybridization and to sliding modes along this variety, respectivelyComment: conference SASB 2011, to be published in Electronic Notes in Theoretical Computer Scienc

    Model reduction of biochemical reactions networks by tropical analysis methods

    Full text link
    We discuss a method of approximate model reduction for networks of biochemical reactions. This method can be applied to networks with polynomial or rational reaction rates and whose parameters are given by their orders of magnitude. In order to obtain reduced models we solve the problem of tropical equilibration that is a system of equations in max-plus algebra. In the case of networks with nonlinear fast cycles we have to solve the problem of tropical equilibration at least twice, once for the initial system and a second time for an extended system obtained by adding to the initial system the differential equations satisfied by the conservation laws of the fast subsystem. The two steps can be reiterated until the fast subsystem has no conservation laws different from the ones of the full model. Our method can be used for formal model reduction in computational systems biology

    Exploring the concept of interaction computing through the discrete algebraic analysis of the Belousov–Zhabotinsky reaction

    Get PDF
    Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn

    On Projection-Based Model Reduction of Biochemical Networks-- Part I: The Deterministic Case

    Full text link
    This paper addresses the problem of model reduction for dynamical system models that describe biochemical reaction networks. Inherent in such models are properties such as stability, positivity and network structure. Ideally these properties should be preserved by model reduction procedures, although traditional projection based approaches struggle to do this. We propose a projection based model reduction algorithm which uses generalised block diagonal Gramians to preserve structure and positivity. Two algorithms are presented, one provides more accurate reduced order models, the second provides easier to simulate reduced order models. The results are illustrated through numerical examples.Comment: Submitted to 53rd IEEE CD

    Conditions for duality between fluxes and concentrations in biochemical networks

    Get PDF
    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. That is, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes

    From Electric Circuits to Chemical Networks

    Full text link
    Electric circuits manipulate electric charge and magnetic flux via a small set of discrete components to implement useful functionality over continuous time-varying signals represented by currents and voltages. Much of the same functionality is useful to biological organisms, where it is implemented by a completely different set of discrete components (typically proteins) and signal representations (typically via concentrations). We describe how to take a linear electric circuit and systematically convert it to a chemical reaction network of the same functionality, as a dynamical system. Both the structure and the components of the electric circuit are dissolved in the process, but the resulting chemical network is intelligible. This approach provides access to a large library of well-studied devices, from analog electronics, whose chemical network realization can be compared to natural biochemical networks, or used to engineer synthetic biochemical networks

    Reduction of dynamical biochemical reaction networks in computational biology

    Get PDF
    Biochemical networks are used in computational biology, to model the static and dynamical details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multi-scaleness is another property of these networks, that can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler networks, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state and quasi-equilibrium approximations, and provide practical recipes for model reduction of linear and nonlinear networks. We also discuss the application of model reduction to backward pruning machine learning techniques
    corecore