64,296 research outputs found

    Development of Physics Applied to Medicine in the UK, 1945–90

    Get PDF
    Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.First published by the Wellcome Trust Centre for the History of Medicine at UCL, 2006.©The Trustee of the Wellcome Trust, London, 2006.All volumes are freely available online at: www.history.qmul.ac.uk/research/modbiomed/wellcome_witnesses/Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Organized with the assistance of Professor John Clifton (UCL) and chaired by Professor Peter Williams (Manchester), this seminar examined the early developments of medical physics in the UK between 1945 and 1990. Participants discussed a range of themes including medical physics before and during the war, the role of the King's Fund and the formation of the Hospital Physicists' Association (HPA), expansion of medical physics outside radiotherapy and to non-radiation physics (ultrasound, medical instrumentation, bioengineering, use of digital computers), developing regional services and links with industry. The seminar finished with a discussion on the changing scene in the 1980s, covering topics such as funding, academic and undergraduate medical physics, imaging, CT, NMR and others. Participants included Mr Tom Ashton, Dr Barry Barber, Professors Roland Blackwell and Terence Burlin, Dr Joseph Blau, Mr Bob (John) Burns, Professors John Clifton, David Delpy, Philip Dendy and Jack Fowler, Dr Jean Guy, Mr John Haggith, Drs John Haybittle, Alan Jennings and John Law, Professors John Mallard and Joe McKie, Mr David Murnaghan, Professor Angela Newing, Dr Sydney Osborn, Professor Rodney Smallwood, Dr Adrian Thomas, Dr Peter Tothill, Mr Theodore Tulley, Professors Peter Wells and John West, and Mr John Wilkinson. Christie D A, Tansey E M. (eds) (2006) Development of physics applied to medicine in the UK, 1945–90, Wellcome Witnesses to Twentieth Century Medicine, vol. 28. London: The Wellcome Trust Centre for the History of Medicine at UCL.The Wellcome Trust Centre for the History of Medicine at UCL is funded by the Wellcome Trust, which is a registered charity, no. 210183

    EPiK-a Workflow for Electron Tomography in Kepler.

    Get PDF
    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility

    Łukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Get PDF
    A novel approach to self-organizing, highly-complex systems (HCS), such as living organisms and artificial intelligent systems (AIs), is presented which is relevant to Cognition, Medical Bioinformatics and Computational Neuroscience. Quantum Automata (QAs) were defined in our previous work as generalized, probabilistic automata with quantum state spaces (Baianu, 1971). Their next-state functions operate through transitions between quantum states defined by the quantum equations of motion in the Schroedinger representation, with both initial and boundary conditions in space-time. Such quantum automata operate with a quantum logic, or Q-logic, significantly different from either Boolean or Łukasiewicz many-valued logic. A new theorem is proposed which states that the category of quantum automata and automata--homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)--Systems which are open, dynamic biosystem networks with defined biological relations that represent physiological functions of primordial organisms, single cells and higher organisms

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care

    NASA guidelines on report literature

    Get PDF
    NASA seeks for inclusion in its Scientific and Technical Information System research reports, conference proceedings, meeting papers, monographs, and doctoral and post graduate theses which relate to the NASA mission and objectives. Topics of interest to NASA are presented
    corecore