60,831 research outputs found

    Łukasiewicz-Moisil Many-Valued Logic Algebra of Highly-Complex Systems

    Get PDF
    A novel approach to self-organizing, highly-complex systems (HCS), such as living organisms and artificial intelligent systems (AIs), is presented which is relevant to Cognition, Medical Bioinformatics and Computational Neuroscience. Quantum Automata (QAs) were defined in our previous work as generalized, probabilistic automata with quantum state spaces (Baianu, 1971). Their next-state functions operate through transitions between quantum states defined by the quantum equations of motion in the Schroedinger representation, with both initial and boundary conditions in space-time. Such quantum automata operate with a quantum logic, or Q-logic, significantly different from either Boolean or Łukasiewicz many-valued logic. A new theorem is proposed which states that the category of quantum automata and automata--homomorphisms has both limits and colimits. Therefore, both categories of quantum automata and classical automata (sequential machines) are bicomplete. A second new theorem establishes that the standard automata category is a subcategory of the quantum automata category. The quantum automata category has a faithful representation in the category of Generalized (M,R)--Systems which are open, dynamic biosystem networks with defined biological relations that represent physiological functions of primordial organisms, single cells and higher organisms

    Patient Specific Congestive Heart Failure Detection From Raw ECG signal

    Full text link
    In this study; in order to diagnose congestive heart failure (CHF) patients, non-linear second-order difference plot (SODP) obtained from raw 256 Hz sampled frequency and windowed record with different time of ECG records are used. All of the data rows are labelled with their belongings to classify much more realistically. SODPs are divided into different radius of quadrant regions and numbers of the points fall in the quadrants are computed in order to extract feature vectors. Fisher's linear discriminant, Naive Bayes, Radial basis function, and artificial neural network are used as classifier. The results are considered in two step validation methods as general k-fold cross-validation and patient based cross-validation. As a result, it is shown that using neural network classifier with features obtained from SODP, the constructed system could distinguish normal and CHF patients with 100% accuracy rate. KeywordsComment: Congestive heart failure, ECG, Second-Order Difference Plot, classification, patient based cross-validatio

    Focal Spot, Spring 1982

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1031/thumbnail.jp

    Focal Spot, Spring 1976

    Get PDF
    https://digitalcommons.wustl.edu/focal_spot_archives/1014/thumbnail.jp

    From Simple to Complex and Ultra-complex Systems:\ud A Paradigm Shift Towards Non-Abelian Systems Dynamics

    Get PDF
    Atoms, molecules, organisms distinguish layers of reality because of the causal links that govern their behavior, both horizontally (atom-atom, molecule-molecule, organism-organism) and vertically (atom-molecule-organism). This is the first intuition of the theory of levels. Even if the further development of the theory will require imposing a number of qualifications to this initial intuition, the idea of a series of entities organized on different levels of complexity will prove correct. Living systems as well as social systems and the human mind present features remarkably different from those characterizing non-living, simple physical and chemical systems. We propose that super-complexity requires at least four different categorical frameworks, provided by the theories of levels of reality, chronotopoids, (generalized) interactions, and anticipation

    Development of Physics Applied to Medicine in the UK, 1945–90

    Get PDF
    Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.First published by the Wellcome Trust Centre for the History of Medicine at UCL, 2006.©The Trustee of the Wellcome Trust, London, 2006.All volumes are freely available online at: www.history.qmul.ac.uk/research/modbiomed/wellcome_witnesses/Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Annotated and edited transcript of a Witness Seminar held on 5 July 2005. Introduction by Dr Jeff Hughes.Organized with the assistance of Professor John Clifton (UCL) and chaired by Professor Peter Williams (Manchester), this seminar examined the early developments of medical physics in the UK between 1945 and 1990. Participants discussed a range of themes including medical physics before and during the war, the role of the King's Fund and the formation of the Hospital Physicists' Association (HPA), expansion of medical physics outside radiotherapy and to non-radiation physics (ultrasound, medical instrumentation, bioengineering, use of digital computers), developing regional services and links with industry. The seminar finished with a discussion on the changing scene in the 1980s, covering topics such as funding, academic and undergraduate medical physics, imaging, CT, NMR and others. Participants included Mr Tom Ashton, Dr Barry Barber, Professors Roland Blackwell and Terence Burlin, Dr Joseph Blau, Mr Bob (John) Burns, Professors John Clifton, David Delpy, Philip Dendy and Jack Fowler, Dr Jean Guy, Mr John Haggith, Drs John Haybittle, Alan Jennings and John Law, Professors John Mallard and Joe McKie, Mr David Murnaghan, Professor Angela Newing, Dr Sydney Osborn, Professor Rodney Smallwood, Dr Adrian Thomas, Dr Peter Tothill, Mr Theodore Tulley, Professors Peter Wells and John West, and Mr John Wilkinson. Christie D A, Tansey E M. (eds) (2006) Development of physics applied to medicine in the UK, 1945–90, Wellcome Witnesses to Twentieth Century Medicine, vol. 28. London: The Wellcome Trust Centre for the History of Medicine at UCL.The Wellcome Trust Centre for the History of Medicine at UCL is funded by the Wellcome Trust, which is a registered charity, no. 210183

    From Simple to Complex and Ultra-complex Systems:\ud A Paradigm Shift Towards Non-Abelian Systems Dynamics

    Get PDF
    Atoms, molecules, organisms distinguish layers of reality because of the causal links that govern their behavior, both horizontally (atom-atom, molecule-molecule, organism-organism) and vertically (atom-molecule-organism). This is the first intuition of the theory of levels. Even if the further development of the theory will require imposing a number of qualifications to this initial intuition, the idea of a series of entities organized on different levels of complexity will prove correct. Living systems as well as social systems and the human mind present features remarkably different from those characterizing non-living, simple physical and chemical systems. We propose that super-complexity requires at least four different categorical frameworks, provided by the theories of levels of reality, chronotopoids, (generalized) interactions, and anticipation
    corecore