220,737 research outputs found

    Quantum Computing: Pro and Con

    Get PDF
    I assess the potential of quantum computation. Broad and important applications must be found to justify construction of a quantum computer; I review some of the known quantum algorithms and consider the prospects for finding new ones. Quantum computers are notoriously susceptible to making errors; I discuss recently developed fault-tolerant procedures that enable a quantum computer with noisy gates to perform reliably. Quantum computing hardware is still in its infancy; I comment on the specifications that should be met by future hardware. Over the past few years, work on quantum computation has erected a new classification of computational complexity, has generated profound insights into the nature of decoherence, and has stimulated the formulation of new techniques in high-precision experimental physics. A broad interdisciplinary effort will be needed if quantum computers are to fulfill their destiny as the world's fastest computing devices. (This paper is an expanded version of remarks that were prepared for a panel discussion at the ITP Conference on Quantum Coherence and Decoherence, 17 December 1996.)Comment: 17 pages, LaTeX, submitted to Proc. Roy. Soc. Lond. A, minor correction

    Development, Implementation, and Optimization of a Modern, Subsonic/Supersonic Panel Method

    Get PDF
    In the early stages of aircraft design, engineers consider many different design concepts, examining the trade-offs between different component arrangements and sizes, thrust and power requirements, etc. Because so many different designs are considered, it is best in the early stages of design to use simulation tools that are fast; accuracy is secondary. A common simulation tool for early design and analysis is the panel method. Panel methods were first developed in the 1950s and 1960s with the advent of modern computers. Despite being reasonably accurate and very fast, their development was abandoned in the late 1980s in favor of more complex and accurate simulation methods. The panel methods developed in the 1980s are still in use by aircraft designers today because of their accuracy and speed. However, they are cumbersome to use and limited in applicability. The purpose of this work is to reexamine panel methods in a modern context. In particular, this work focuses on the application of panel methods to supersonic aircraft (a supersonic aircraft is one that flies faster than the speed of sound). Various aspects of the panel method, including the distributions of the unknown flow variables on the surface of the aircraft and efficiently solving for these unknowns, are discussed. Trade-offs between alternative formulations are examined and recommendations given. This work also serves to bring together, clarify, and condense much of the literature previously published regarding panel methods so as to assist future developers of panel methods

    Faulty Metrics and the Future of Digital Journalism

    Get PDF
    This report explores the industry of Internet measurement and its impact on news organizations working online. It investigates this landscape through a combination of documentary research and interviews with measurement companies, trade groups, advertising agencies, media scholars, and journalists from national newspapers, regional papers, and online-only news ventures

    Educational change and ICT: an exploration of priorities 2 and 3 of the DfES e-strategy in schools and colleges: the current landscape and implementation issues

    Get PDF
    Landscape review of integrated online support for learners and collaborative approaches to personalised learning activities

    An Integrated Simulation System for Human Factors Study

    Get PDF
    It has been reported that virtual reality can be a useful tool for ergonomics study. The proposed integrated simulation system aims at measuring operator's performance in an interactive way for 2D control panel design. By incorporating some sophisticated virtual reality hardware/software, the system allows natural human-system and/or human-human interaction in a simulated virtual environment; enables dynamic objective measurement of human performance; and evaluates the quality of the system design in human factors perspective based on the measurement. It can also be for operation training for some 2D control panels

    NASA control research overview

    Get PDF
    An overview of NASA research activities related to the control of aeronautical vehicles is presented. A groundwork is laid by showing the organization at NASA Headquarters for supporting programs and providing funding. Then a synopsis of many of the ongoing activities is presented, some of which will be presented in greater detail elsewhere. A major goal of the workshop is to provide a showcase of ongoing NASA sponsored research. Then, through the panel sessions and conversations with workshop participants, it is hoped to glean a focus for future directions in aircraft controls research
    corecore