105,586 research outputs found

    Scalable Interactive Volume Rendering Using Off-the-shelf Components

    Get PDF
    This paper describes an application of a second generation implementation of the Sepia architecture (Sepia-2) to interactive volu-metric visualization of large rectilinear scalar fields. By employingpipelined associative blending operators in a sort-last configuration a demonstration system with 8 rendering computers sustains 24 to 28 frames per second while interactively rendering large data volumes (1024x256x256 voxels, and 512x512x512 voxels). We believe interactive performance at these frame rates and data sizes is unprecedented. We also believe these results can be extended to other types of structured and unstructured grids and a variety of GL rendering techniques including surface rendering and shadow map-ping. We show how to extend our single-stage crossbar demonstration system to multi-stage networks in order to support much larger data sizes and higher image resolutions. This requires solving a dynamic mapping problem for a class of blending operators that includes Porter-Duff compositing operators

    Investigating SRAM PUFs in large CPUs and GPUs

    Get PDF
    Physically unclonable functions (PUFs) provide data that can be used for cryptographic purposes: on the one hand randomness for the initialization of random-number generators; on the other hand individual fingerprints for unique identification of specific hardware components. However, today's off-the-shelf personal computers advertise randomness and individual fingerprints only in the form of additional or dedicated hardware. This paper introduces a new set of tools to investigate whether intrinsic PUFs can be found in PC components that are not advertised as containing PUFs. In particular, this paper investigates AMD64 CPU registers as potential PUF sources in the operating-system kernel, the bootloader, and the system BIOS; investigates the CPU cache in the early boot stages; and investigates shared memory on Nvidia GPUs. This investigation found non-random non-fingerprinting behavior in several components but revealed usable PUFs in Nvidia GPUs.Comment: 25 pages, 6 figures. Code in appendi
    corecore