3,108 research outputs found

    Artificial intelligence in cancer imaging: Clinical challenges and applications

    Get PDF
    Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care

    Oncologic Imaging

    Get PDF
    Imaging is an integral part of the multidisciplinary management of cancer. Radiographic techniques are indispensable for proper staging of cancers and evaluation of the response of tumors to treatment. A wide variety of imaging modalities is available to clinicians. This chapter in Cancer Concepts: A Guidebook for the Non-Oncologist will introduce the role of radiology in the diagnosis and treatment of cancer.https://escholarship.umassmed.edu/cancer_concepts/1017/thumbnail.jp

    Early Contrast Enhancement: a novel Magnetic Resonance Imaging biomarker of pleural malignancy

    Get PDF
    Introduction: Pleural Malignancy (PM) is often occult on subjective radiological assessment. We sought to define a novel, semi-objective Magnetic Resonance Imaging (MRI) biomarker of PM, targeted to increased tumour microvessel density (MVD) and applicable to minimal pleural thickening. Materials and methods: 60 consecutive patients with suspected PM underwent contrast-enhanced 3-T MRI then pleural biopsy. In 58/60, parietal pleura signal intensity (SI) was measured in multiple regions of interest (ROI) at multiple time-points, generating ROI SI/time curves and Mean SI gradient (MSIG: SI increment/time). The diagnostic performance of Early Contrast Enhancement (ECE; which was defined as a SI peak in at least one ROI at or before 4.5 min) was compared with subjective MRI and Computed Tomography (CT) morphology results. MSIG was correlated against tumour MVD (based on Factor VIII immunostain) in 31 patients with Mesothelioma. Results: 71% (41/58) patients had PM. Pleural thickening was <10 mm in 49/58 (84%). ECE sensitivity was 83% (95% CI 61–94%), specificity 83% (95% CI 68–91%), positive predictive value 68% (95% CI 47–84%), negative predictive value 92% (78–97%). ECE performance was similar or superior to subjective CT and MRI. MSIG correlated with MVD (r = 0.4258, p = .02). Discussion: ECE is a semi-objective, perfusion-based biomarker of PM, measurable in minimal pleural thickening. Further studies are warranted

    DEVELOPING NOVEL COMPUTER-AIDED DETECTION AND DIAGNOSIS SYSTEMS OF MEDICAL IMAGES

    Get PDF
    Reading medical images to detect and diagnose diseases is often difficult and has large inter-reader variability. To address this issue, developing computer-aided detection and diagnosis (CAD) schemes or systems of medical images has attracted broad research interest in the last several decades. Despite great effort and significant progress in previous studies, only limited CAD schemes have been used in clinical practice. Thus, developing new CAD schemes is still a hot research topic in medical imaging informatics field. In this dissertation, I investigate the feasibility of developing several new innovative CAD schemes for different application purposes. First, to predict breast tumor response to neoadjuvant chemotherapy and reduce unnecessary aggressive surgery, I developed two CAD schemes of breast magnetic resonance imaging (MRI) to generate quantitative image markers based on quantitative analysis of global kinetic features. Using the image marker computed from breast MRI acquired pre-chemotherapy, CAD scheme enables to predict radiographic complete response (CR) of breast tumors to neoadjuvant chemotherapy, while using the imaging marker based on the fusion of kinetic and texture features extracted from breast MRI performed after neoadjuvant chemotherapy, CAD scheme can better predict the pathologic complete response (pCR) of the patients. Second, to more accurately predict prognosis of stroke patients, quantifying brain hemorrhage and ventricular cerebrospinal fluid depicting on brain CT images can play an important role. For this purpose, I developed a new interactive CAD tool to segment hemorrhage regions and extract radiological imaging marker to quantitatively determine the severity of aneurysmal subarachnoid hemorrhage at presentation and correlate the estimation with various homeostatic/metabolic derangements and predict clinical outcome. Third, to improve the efficiency of primary antibody screening processes in new cancer drug development, I developed a CAD scheme to automatically identify the non-negative tissue slides, which indicate reactive antibodies in digital pathology images. Last, to improve operation efficiency and reliability of storing digital pathology image data, I developed a CAD scheme using optical character recognition algorithm to automatically extract metadata from tissue slide label images and reduce manual entry for slide tracking and archiving in the tissue pathology laboratories. In summary, in these studies, we developed and tested several innovative approaches to identify quantitative imaging markers with high discriminatory power. In all CAD schemes, the graphic user interface-based visual aid tools were also developed and implemented. Study results demonstrated feasibility of applying CAD technology to several new application fields, which has potential to assist radiologists, oncologists and pathologists improving accuracy and consistency in disease diagnosis and prognosis assessment of using medical image

    Quantitative Analysis of Dynamic Contrast-Enhanced Magnetic Resonance Breast Images: Optimization of the Time-to-Peak as a Diagnostic Indicator

    Get PDF
    Dynamic contrast-enhanced MRI (DCE-MRI) has been widely used in the diagnosis of breast cancer and as an aid in the management of this disease. Although DCE-MRI has a high sensitivity for the detection of malignant breast lesions, distinguishing malignant from benign lesions is more challenging for this method and may depend to some extent on how the images are analysed. Although clinical assessment of these images typically involves qualitative assessment by an expert, there is growing interest in the development of quantitative and automated methods to assist the expert assessment. This thesis involves the quantitative analysis of a particular empirical feature of the time evolution of the DCE-MRI signal known as the time-to-peak ( 7 ^ ) . In particular, this thesis investigates die feasibility of applying measures sensitive to 7 ^ heterogeneity as indicators for malignancy in breast DCE-MRI. Breast lesions in this study were automatically segmented by K-means clustering. Voxel- by-voxel 7\u27peak values were extracted using an empirical model. The / 1th percentile values (p = 10, 20...) of the 7’peak distribution within each lesion, as well as the fractional and absolute hot spot volumes were determined, where hot spot volume refers to the volume of tissue with 7 ^ less than a threshold value. Using the area under the receiver operating characteristic curve (AUC), these measures were tested as indicators for differentiating fibroadenomas from invasive lesions and from ductal carcinoma in situ, as well as for differentiating non-fibroadenoma benign lesions from these malignant lesions. For differentiating fibroadenomas from malignant lesions, low percentile values (p = 10) provided high diagnostic performance. At the optimal threshold (3 min), the hot spot volume provided high diagnostic performance. However, non-fibroadenoma benign lesions were quite difficult to distinguish from malignant lesions. This thesis demonstrates that quantitative analysis of the 7’peak distribution can be optimized for diagnostic performance providing indicators sensitive to intra-lesion r peak heterogeneity
    • …
    corecore