24,070 research outputs found

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    MULTI AGENT-BASED ENVIRONMENTAL LANDSCAPE (MABEL) - AN ARTIFICIAL INTELLIGENCE SIMULATION MODEL: SOME EARLY ASSESSMENTS

    Get PDF
    The Multi Agent-Based Environmental Landscape model (MABEL) introduces a Distributed Artificial Intelligence (DAI) systemic methodology, to simulate land use and transformation changes over time and space. Computational agents represent abstract relations among geographic, environmental, human and socio-economic variables, with respect to land transformation pattern changes. A multi-agent environment is developed providing task-nonspecific problem-solving abilities, flexibility on achieving goals and representing existing relations observed in real-world scenarios, and goal-based efficiency. Intelligent MABEL agents acquire spatial expressions and perform specific tasks demonstrating autonomy, environmental interactions, communication and cooperation, reactivity and proactivity, reasoning and learning capabilities. Their decisions maximize both task-specific marginal utility for their actions and joint, weighted marginal utility for their time-stepping. Agent behavior is achieved by personalizing a dynamic utility-based knowledge base through sequential GIS filtering, probability-distributed weighting, joint probability Bayesian correlational weighting, and goal-based distributional properties, applied to socio-economic and behavioral criteria. First-order logics, heuristics and appropriation of time-step sequences employed, provide a simulation-able environment, capable of re-generating space-time evolution of the agents.Environmental Economics and Policy,

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Environmental Analysis of the Residential Sector in Cairo

    Get PDF
    Rapid demographic increase and transition in governmental policies influenced the patterns of Egyptianresidential sector, services and urban fabric. The housing stock in Egypt is dominated by private owners, informally and high consumption rates. Studies attempted to classify historic periods that created the current urban pattern and led to an uncontrollable expansion of a metropolis. Political and demographic changes had a major role in the city’s urban, architectural and legislative transformation, especially after the change of government policies in 1953. The article aims to evaluate the development milestones of the housing stock in Cairo before and after 1953, from an environmental sustainability perspective on a building and urban scale. Based on official statistics, maps from various periods and literature, the urban development of the city is assessed. The impact of governmental policies and strategic plans is analyzed, taking into consideration demographic growth, urban sprawl and environmental aspects. The residential stock is classified in two time phases (before and after 1953) and three dominant typological -urban and architectural- criteria. Based on this classificatory model, representative characteristics of different periods are assessed in terms of morphology, construction materials and environmental design. The results provide a critical analysis of Cairo's environmental and sustainability policies in the second half of the previous century. It provides an evaluation base for comparison with the city's current built environment and offers guidance for future scenarios

    Geospatial Semantics

    Full text link
    Geospatial semantics is a broad field that involves a variety of research areas. The term semantics refers to the meaning of things, and is in contrast with the term syntactics. Accordingly, studies on geospatial semantics usually focus on understanding the meaning of geographic entities as well as their counterparts in the cognitive and digital world, such as cognitive geographic concepts and digital gazetteers. Geospatial semantics can also facilitate the design of geographic information systems (GIS) by enhancing the interoperability of distributed systems and developing more intelligent interfaces for user interactions. During the past years, a lot of research has been conducted, approaching geospatial semantics from different perspectives, using a variety of methods, and targeting different problems. Meanwhile, the arrival of big geo data, especially the large amount of unstructured text data on the Web, and the fast development of natural language processing methods enable new research directions in geospatial semantics. This chapter, therefore, provides a systematic review on the existing geospatial semantic research. Six major research areas are identified and discussed, including semantic interoperability, digital gazetteers, geographic information retrieval, geospatial Semantic Web, place semantics, and cognitive geographic concepts.Comment: Yingjie Hu (2017). Geospatial Semantics. In Bo Huang, Thomas J. Cova, and Ming-Hsiang Tsou et al. (Eds): Comprehensive Geographic Information Systems, Elsevier. Oxford, U

    Integrating case based reasoning and geographic information systems in a planing support system: Çeşme Peninsula study

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, City and Regional Planning, Izmir, 2009Includes bibliographical references (leaves: 110-121)Text in English; Abstract: Turkish and Englishxii, 140 leavesUrban and regional planning is experiencing fundamental changes on the use of of computer-based models in planning practice and education. However, with this increased use, .Geographic Information Systems. (GIS) or .Computer Aided Design.(CAD) alone cannot serve all of the needs of planning. Computational approaches should be modified to deal better with the imperatives of contemporary planning by using artificial intelligence techniques in city planning process.The main aim of this study is to develop an integrated .Planning Support System. (PSS) tool for supporting the planning process. In this research, .Case Based Reasoning. (CBR) .an artificial intelligence technique- and .Geographic Information Systems. (GIS) .geographic analysis, data management and visualization techniqueare used as a major PSS tools to build a .Case Based System. (CBS) for knowledge representation on an operational study. Other targets of the research are to discuss the benefits of CBR method in city planning domain and to demonstrate the feasibility and usefulness of this technique in a PSS. .Çeşme Peninsula. case study which applied under the desired methodology is presented as an experimental and operational stage of the thesis.This dissertation tried to find out whether an integrated model which employing CBR&GIS could support human decision making in a city planning task. While the CBS model met many of predefined goals of the thesis, both advantages and limitations have been realized from findings when applied to the complex domain such as city planning

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La Géo-Simulation Multi-Agent (GSMA) est un paradigme de modélisation et de simulation de phénomènes dynamiques dans une variété de domaines d'applications tels que le domaine du transport, le domaine des télécommunications, le domaine environnemental, etc. La GSMA est utilisée pour étudier et analyser des phénomènes qui mettent en jeu un grand nombre d'acteurs simulés (implémentés par des agents) qui évoluent et interagissent avec une représentation explicite de l'espace qu'on appelle Environnement Géographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement géographique qui peut être dynamique, complexe et étendu (à grande échelle), un agent doit d'abord disposer d'une représentation détaillée de ce dernier. Les EGV classiques se limitent généralement à une représentation géométrique du monde réel laissant de côté les informations topologiques et sémantiques qui le caractérisent. Ceci a pour conséquence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de réduire les capacités de raisonnement spatial des agents situés. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent à calculer un chemin qui lie deux positions situées dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractéristiques de l'environnement (topologiques et sémantiques), ni celles des agents (types et capacités). Les agents situés ne possèdent donc pas de moyens leur permettant d'acquérir les connaissances nécessaires sur l'environnement virtuel pour pouvoir prendre une décision spatiale informée. Pour répondre à ces limites, nous proposons une nouvelle approche pour générer automatiquement des Environnements Géographiques Virtuels Informés (EGVI) en utilisant les données fournies par les Systèmes d'Information Géographique (SIG) enrichies par des informations sémantiques pour produire des GSMA précises et plus réalistes. De plus, nous présentons un algorithme de planification hiérarchique de chemin qui tire avantage de la description enrichie et optimisée de l'EGVI pour fournir aux agents un chemin qui tient compte à la fois des caractéristiques de leur environnement virtuel et de leurs types et capacités. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise à supporter la prise de décision informée et le raisonnement spatial des agents situés
    corecore