18 research outputs found

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems

    Studies on Design of Spindle-tool System and Their Effects on Overall Milling Process Stability

    Get PDF
    High speed machining using vertical CNC milling centres continues to be a popular approach in a variety of industries including aerospace,automobile,mould and die casting etc.Chatter oscillations have significant influence in restricting the metal removal rates of the machining process.The cutting process instability or chatter is assessed by prediction of frequency response at the tool tip.Present work aims at evaluating the combined effect of a spindle-housing and tool holder on the dynamics of cutting tool by considering the flexibility of spindle unit supported on bearings.The spindle-tool is analysed by using finite element modeling using Timoshenko beam theory.The dynamic characteristics and tool-tip frequency responses are obtained without considering the cutting forces.The results are compared with receptance coupling approach and using 3D modeling in ANSYS.Further experimental modal analysis on the machining spindle of same dimensions has revealed the same dynamic modes.Using the validated FE model of the system,the effects of nonlinear bearing contact forces,spindle-tool holder interface stiffness,bearing span and axial preload, tool overhang and diameter on the frequency response and cutting process stability are studied.Optimal spindle-tool system is designed for achieving maximum dynamic stiffness.The analytically stability lobe diagrams are obtained from the real and imaginary terms of these frequency responses at the tool tip.Dynamic stability issues in helical end-milling using the two and three dimensional cutting force models are considered for the analysis.The stability boundaries are experimentally verified using the cutting tests on both CNC milling spindle and modified drilling tool spindle systems while machining Al-alloy work pieces.Vibration and sound pressure levels are also employed to assure the stability of cutting operations,while surface images are used to identify the chatter marks at various combinations of cutting parameters.Dynamic milling model is employed with the flexible spindle-tool system by considering several effects including variable tool pitch, tool run-out,nonlinear feed forces and process damping. Design and stability studies on the modified drill spindle with a custom-designed work table for milling operations allowed in understanding several interesting facts about spindle-tool systems. Some control strategies including semi-active and active methods are implemented using finite element model of the spindle-tool system to minimize the chatter vibration levels/maximize the stable depth of cut during cutting operations

    International Workshop on MicroFactories (IWMF 2012): 17th-20th June 2012 Tampere Hall Tampere, Finland

    Get PDF
    This Workshop provides a forum for researchers and practitioners in industry working on the diverse issues of micro and desktop factories, as well as technologies and processes applicable for micro and desktop factories. Micro and desktop factories decrease the need of factory floor space, and reduce energy consumption and improve material and resource utilization thus strongly supporting the new sustainable manufacturing paradigm. They can be seen also as a proper solution to point-of-need manufacturing of customized and personalized products near the point of need

    Inverse Dynamics Problems

    Get PDF
    The inverse dynamics problem was developed in order to provide researchers with the state of the art in inverse problems for dynamic and vibrational systems. Contrasted with a forward problem, which solves for the system output in a straightforward manner, an inverse problem searches for the system input through a procedure contaminated with errors and uncertainties. An inverse problem, with a focus on structural dynamics, determines the changes made to the system and estimates the inputs, including forces and moments, to the system, utilizing measurements of structural vibration responses only. With its complex mathematical structure and need for more reliable input estimations, the inverse problem is still a fundamental subject of research among mathematicians and engineering scientists. This book contains 11 articles that touch upon various aspects of inverse dynamic problems

    Computer-based estimation and compensation of diametral errors in CNC turning of cantilever bars

    No full text
    This paper aims to introduce a computer-based estimation and compensation method for diametral errors in cantilever bar turning without additional hardware requirements. In the error estimation method, the error characteristics of workpieces are determined experimentally depending on cutting speed, depth of cut, feed rate, workpiece diameter, length from the chuck and the geometric error sum of CNC lathe. An Artificial Neural Network (ANN) model is trained using these experimental error characteristics for estimation of the error. The ANN model estimated the workpiece dimensional errors with a good accuracy. Error correction is realised via turning of workpieces with a CNC part program which modified based on the estimated error profile. The dimensional errors are reduced approximately by 90% with the proposed method

    International Conference on Civil Infrastructure and Construction (CIC 2020)

    Get PDF
    This is the proceedings of the CIC 2020 Conference, which was held under the patronage of His Excellency Sheikh Khalid bin Khalifa bin Abdulaziz Al Thani in Doha, Qatar from 2 to 5 February 2020. The goal of the conference was to provide a platform to discuss next-generation infrastructure and its construction among key players such as researchers, industry professionals and leaders, local government agencies, clients, construction contractors and policymakers. The conference gathered industry and academia to disseminate their research and field experiences in multiple areas of civil engineering. It was also a unique opportunity for companies and organizations to show the most recent advances in the field of civil infrastructure and construction. The conference covered a wide range of timely topics that address the needs of the construction industry all over the world and particularly in Qatar. All papers were peer reviewed by experts in their field and edited for publication. The conference accepted a total number of 127 papers submitted by authors from five different continents under the following four themes: Theme 1: Construction Management and Process Theme 2: Materials and Transportation Engineering Theme 3: Geotechnical, Environmental, and Geo-environmental Engineering Theme 4: Sustainability, Renovation, and Monitoring of Civil InfrastructureThe list of the Sponsors are listed at page 1

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses
    corecore