50,898 research outputs found

    Graph theoretic methods for the analysis of structural relationships in biological macromolecules

    Get PDF
    Subgraph isomorphism and maximum common subgraph isomorphism algorithms from graph theory provide an effective and an efficient way of identifying structural relationships between biological macromolecules. They thus provide a natural complement to the pattern matching algorithms that are used in bioinformatics to identify sequence relationships. Examples are provided of the use of graph theory to analyze proteins for which three-dimensional crystallographic or NMR structures are available, focusing on the use of the Bron-Kerbosch clique detection algorithm to identify common folding motifs and of the Ullmann subgraph isomorphism algorithm to identify patterns of amino acid residues. Our methods are also applicable to other types of biological macromolecule, such as carbohydrate and nucleic acid structures

    Identification of diverse database subsets using property-based and fragment-based molecular descriptions

    Get PDF
    This paper reports a comparison of calculated molecular properties and of 2D fragment bit-strings when used for the selection of structurally diverse subsets of a file of 44295 compounds. MaxMin dissimilarity-based selection and k-means cluster-based selection are used to select subsets containing between 1% and 20% of the file. Investigation of the numbers of bioactive molecules in the selected subsets suggest: that the MaxMin subsets are noticeably superior to the k-means subsets; that the property-based descriptors are marginally superior to the fragment-based descriptors; and that both approaches are noticeably superior to random selection

    The EVA spectral descriptor

    Get PDF
    The EVA descriptor is derived from fundamental IR- and Raman range molecular vibrational frequencies. EVA is sensitive to 3D structure but has an advantage over field-based 3D-QSAR methods inasmuch as it is invariant to both translation and rotation of the structures concerned and thus structural superposition is not required. The latter property and the demonstration of the effectiveness of the descriptor for QSAR means that EVA has been the subject of a great deal of interest from the modelling community. This review describes the derivation of the descriptor, details its main parameters and how to apply them, and provides an overview of the validation that has been done with the descriptor. A recent enhancement to the technique is described which involves the localised adjustment of variance in such a way that enhanced internal and external predictivity may be obtained. Despite the statistical quality of EVA QSAR models the main draw-back to the descriptor at present is the difficulty associated with back-tracking from a PLS model to an EVA pharmacophore. Brief comment is made on the use of the EVA descriptor for diversity studies and the similarity searching of chemical structure databases

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Consciousness operates beyond the timescale for discerning time intervals: implications for Q-mind theories and analysis of quantum decoherence in brain

    Get PDF
    This paper presents in details how the subjective time is constructed by the brain cortex via reading packets of information called "time labels", produced by the right basal ganglia that act as brain timekeeper. Psychophysiological experiments have measured the subjective "time quanta" to be 40 ms and show that consciousness operates beyond that scale - an important result having profound implications for the Q-mind theory. Although in most current mainstream biophysics research on cognitive processes, the brain is modelled as a neural network obeying classical physics, Penrose (1989, 1997) and others have argued that quantum mechanics may play an essential role, and that successful brain simulations can only be performed with a quantum computer. Tegmark (2000) showed that make-or-break issue for the quantum models of mind is whether the relevant degrees of freedom of the brain can be sufficiently isolated to retain their quantum coherence and tried to settle the issue with detailed calculations of the relevant decoherence rates. He concluded that the mind is classical rather than quantum system, however his reasoning is based on biological inconsistency. Here we present detailed exposition of molecular neurobiology and define the dynamical timescale of cognitive processes linked to consciousness to be 10-15 ps showing that macroscopic quantum coherent phenomena in brain are not ruled out, and even may provide insight in understanding life, information and consciousness

    Arginine, a Key Residue for the Enhancing Ability of an Antifreeze Protein of the Beetle Dendroides canadensis

    Get PDF
    Antifreeze proteins (AFPs) can produce a difference between the nonequilibrium freezing point and the melting point, termed thermal hysteresis (TH). The TH activity of an antifreeze protein (AFP) depends on the specific AFP and its concentration as well as the presence of cosolutes including low molecular mass solutes and/or proteins. We recently identified series of carboxylates and polyols as efficient enhancers for an AFP from the beetle Dendroides canadensis. In this study, we chemically modified DAFP-1 using the arginine-specific reagent 1,2-cyclohexanedione. We demonstrated that 1,2-cyclohexanedione specifically modifies one arginine residue and the modified DAFP-1 loses its enhancing ability completely or partially in the presence of previously identified enhancers. The stronger the enhancement ability of the enhancer on the native DAFP-1, the stronger the enhancement effect of the enhancer on the modified DAFP-1. The weaker enhancers (e.g., glycerol) completely lose their enhancement effect on the modified DAFP-1 due to their inability to compete with 1,2-cyclohexanedione for the arginine residue. Regeneration of the arginine residue using hydroxylamine fully restored the enhancing ability of DAFP-1. These studies indicated that an arginine residue is critical for the enhancing ability of DAFP-1 and the guanidinium group of the arginine residue is important for its interaction with the enhancers, where the general mechanism of arginine−ligand interaction is borne. This work may initiate a complete mechanistic study of the enhancement effect in AFPs

    QSAR study for carcinogenicity in a large set of organic compounds

    Get PDF
    In our continuing efforts to find out acceptable Absorption, Distribution, Metabolization, Elimination and Toxicity (ADMET) properties of organic compounds, we establish linear QSAR models for the carcinogenic potential prediction of 1464 compounds taken from the "Galvez data set", that include many marketed drugs. More than a thousand of geometry-independent molecular descriptors are simultaneously analyzed, obtained with the softwares E-Dragon and Recon. The variable subset selection method employed is the Replacement Method, and also the improved version Enhanced Replacement Method. The established models are properly validated through an external test set of compounds, and by means of the Leave-Group-Out Cross Validation method. In addition, we apply the Y-Randomization strategy and analyze the Applicability Domain of the developed model. Finally, we compare the results obtained in present study with the previous ones from the literature. The novelty of present work relies on the development of an alternative predictive structure-carcinogenicity relationship in a large heterogeneous set of organic compounds, by only using a reduced number of geometry independent molecular descriptors.Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Comelli, Nieves Carolina. Universidad Nacional de Catamarca. Facultad de Ciencias Agrarias; ArgentinaFil: Ortiz, Erlinda del Valle. Universidad Nacional de Catamarca. Facultad de Tecnología y Ciencias Aplicadas; ArgentinaFil: Castro, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    Get PDF
    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production
    corecore