11 research outputs found

    Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model

    Full text link
    We present a computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model of diblock copolymers. The model is a fourth-order parabolic partial differential equation subject to homogeneous Neumann boundary conditions, which contains as a special case the celebrated Cahn-Hilliard equation. While the attractor structure of the latter model is completely understood for one-dimensional domains, the diblock copolymer extension exhibits considerably richer long-term dynamical behavior, which includes a high level of multistability. In this paper, we establish the existence of certain heteroclinic connections between the homogeneous equilibrium state, which represents a perfect copolymer mixture, and all local and global energy minimizers. In this way, we show that not every solution originating near the homogeneous state will converge to the global energy minimizer, but rather is trapped by a stable state with higher energy. This phenomenon can not be observed in the one-dimensional Cahn-Hillard equation, where generic solutions are attracted by a global minimizer

    Towards computational Morse-Floer homology: forcing results for connecting orbits by computing relative indices of critical points

    Full text link
    To make progress towards better computability of Morse-Floer homology, and thus enhance the applicability of Floer theory, it is essential to have tools to determine the relative index of equilibria. Since even the existence of nontrivial stationary points is often difficult to accomplish, extracting their index information is usually out of reach. In this paper we establish a computer-assisted proof approach to determining relative indices of stationary states. We introduce the general framework and then focus on three example problems described by partial differential equations to show how these ideas work in practice. Based on a rigorous implementation, with accompanying code made available, we determine the relative indices of many stationary points. Moreover, we show how forcing results can be then used to prove theorems about connecting orbits and traveling waves in partial differential equations.Comment: 30 pages, 4 figures. Revised accepted versio

    CAPD::DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems

    Full text link
    We present the CAPD::DynSys library for rigorous numerical analysis of dynamical systems. The basic interface is described together with several interesting case studies illustrating how it can be used for computer-assisted proofs in dynamics of ODEs.Comment: 25 pages, 4 figures, 11 full C++ example

    Validated Numerical Approximation of Stable Manifolds for Parabolic Partial Differential Equations

    Get PDF
    This paper develops validated computational methods for studying infinite dimensional stable manifolds at equilibrium solutions of parabolic PDEs, synthesizing disparate errors resulting from numerical approximation. To construct our approximation, we decompose the stable manifold into three components: a finite dimensional slow component, a fast-but-finite dimensional component, and a strongly contracting infinite dimensional “tail”. We employ the parameterization method in a finite dimensional projection to approximate the slow-stable manifold, as well as the attached finite dimensional invariant vector bundles. This approximation provides a change of coordinates which largely removes the nonlinear terms in the slow stable directions. In this adapted coordinate system we apply the Lyapunov-Perron method, resulting in mathematically rigorous bounds on the approximation errors. As a result, we obtain significantly sharper bounds than would be obtained using only the linear approximation given by the eigendirections. As a concrete example we illustrate the technique for a 1D Swift-Hohenberg equation.</p

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore