47,283 research outputs found

    CO2-based heavy oil recovery processes for post-CHOPS reservoirs

    Get PDF
    Authors would like to thank the financial support of the Petroleum Technology Research Centre Saskatchewan (PTRC) for this project, and Computer Modeling Group Ltd. for the use of their thermal reservoir simulation software CMG STARSTM. We would also like to thank Jacky Wang for his help and comments on the modeling part of this study.Peer reviewedPostprin

    Finite Element Simulation of a Steady-State Stress Distribution in a Four Stroke Compressed Natural Gas-Direct Injection Engine Cylinder Head

    Get PDF
    The main aim of this work is to predict the design performance based on the stress/strain and thermal stress behaviour of cylinder head under various operating conditions. The effects of engine operating conditions such as combustion gas temperature and maximum internal pressure, components initial temperature and engine speed on the stress and thermal stress behaviour of the cylinder head have been analyzed. The analysis was carried out using a finite element analysis (FEA) software package, MSC.NASTRAN which is use to simulate and predict the von-Mises stress and strain pattern and thermal distribution of the cylinder head structure during the combustion process in the engine and the geometry modelling was carried out using a popular computeraided engineering tool, CATIA V5. The result can be used to determine the quality of the design as well as identify areas which require further improvement. In this investigation, structural analyses of the cylinder head highlight several areas of interest. The maximum stress is found not exceeding the material strength of cylinder head, and thus the basic design criteria, namely no yielding and no structural failure under firing load case, can be satisfied. In addition, the effect of thermal stress/strain provides a good indication on structural integrity and reliability of the cylinder head, which can be improved in the early stages of design. This steadystate finite element method (FEM) stress analysis can play a very effective role in the rapid prototyping of the cylinder head

    Life cycle assessment (LCA) applied to the process industry: a review

    Get PDF
    Purpose : Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations. Method : This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. Results : The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions. Conclusions : The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry

    DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Get PDF
    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids system. Computer-aided design (CAD) models of real particles can be imported to obtain an accurate representation of their shape. EDEM(TradeMark) uses particle-scale behavior models to simulate bulk solids behavior. In addition to particle size and shape, the models can account for physical properties of particles along with interaction between particles and with equipment surfaces and surrounding media, as needed to define the physics of a particular process

    CFD Applications in Energy Engineering Research and Simulation: An Introduction to Published Reviews

    Get PDF
    Computational Fluid Dynamics (CFD) has been firmly established as a fundamental discipline to advancing research on energy engineering. The major progresses achieved during the last two decades both on software modelling capabilities and hardware computing power have resulted in considerable and widespread CFD interest among scientist and engineers. Numerical modelling and simulation developments are increasingly contributing to the current state of the art in many energy engineering aspects, such as power generation, combustion, wind energy, concentrated solar power, hydro power, gas and steam turbines, fuel cells, and many others. This review intends to provide an overview of the CFD applications in energy and thermal engineering, as a presentation and background for the Special Issue “CFD Applications in Energy Engineering Research and Simulation” published by Processes in 2020. A brief introduction to the most significant reviews that have been published on the particular topics is provided. The objective is to provide an overview of the CFD applications in energy and thermal engineering, highlighting the review papers published on the different topics, so that readers can refer to the different review papers for a thorough revision of the state of the art and contributions into the particular field of interest

    Case study of an Organic Rankine Cycle (ORC) for waste heat recovery from an Electric Arc Furnace (EAF)

    Get PDF
    The organic Rankine cycle (ORC) is a mature technology for the conversion of waste heat to electricity. Although many energy intensive industries could benefit significantly from the integration of ORC technology, its current adoption rate is limited. One important reason for this arises from the difficulty of prospective investors and end-users to recognize and, ultimately, realise the potential energy savings from such deployment. In recent years, electric arc furnaces (EAF) have been identified as particularly interesting candidates for the implementation of waste heat recovery projects. Therefore, in this work, the integration of an ORC system into a 100 MWe EAF is investigated. The effect of evaluations based on averaged heat profiles, a steam buffer and optimized ORC architectures is investigated. The results show that it is crucial to take into account the heat profile variations for the typical batch process of an EAF. An optimized subcritical ORC system is found capable of generating a net electrical output of 752 kWe with a steam buffer working at 25 bar. If combined heating is considered, the ORC system can be optimized to generate 521 kWe of electricity, while also delivering 4.52 MW of heat. Finally, an increased power output (by 26% with combined heating, and by 39% without combined heating) can be achieved by using high temperature thermal oil for buffering instead of a steam loop; however, the use of thermal oil in these applications has been until now typically discouraged due to flammability concerns

    DTU Chemical Engineering:Annual Report 2011

    Get PDF

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term
    corecore