55 research outputs found

    Braces optimized with computer-assisted design and simulations are lighter, more comfortable, and more efficient than plaster-cast braces for the treatment of adolescent idiopathic scoliosis

    Get PDF
    Study Design Feasibility study to compare the effectiveness of 2 brace design and fabrication methods for treatment of adolescent idiopathic scoliosis: a standard plaster-cast method and a computational method combining computer-aided design and fabrication and finite element simulation. Objectives To improve brace design using a new brace design method. Summary of Background Data Initial in-brace correction and patient's compliance to treatment are important factors for brace efficiency. Negative cosmetic appearance and functional discomfort resulting from pressure points, humidity, and restriction of movement can cause poor compliance with the prescribed wearing schedule. Methods A total of 15 consecutive patients with brace prescription were recruited. Two braces were designed and fabricated for each patient: a standard thoracolumbo-sacral orthosis brace fabricated using plaster-cast method and an improved brace for comfort (NewBrace) fabricated using a computational method combining computer-aided design and fabrication software (Rodin4D) and a simulation platform. Three-dimensional reconstructions of the torso and the trunk skeleton were used to create a personalized finite element model, which was used for brace design and predict correction. Simulated pressures on the torso and distance between the brace and patient's skin were used to remove ineffective brace material situated at more than 6 mm from the patient's skin. Biplanar radiographs of the patient wearing each brace were taken to compare their effectiveness. Patients filled out a questionnaire to compare their comfort. Results NewBraces were 61% thinner and had 32% less material than standard braces with equivalent correction. NewBraces were more comfortable (11 of 15 patients) or equivalent to (4 of 15 cases) standard braces. Simulated correction was simulated within 5° compared with in-brace results. Conclusions This study demonstrates the feasibility of designing lighter and more comfortable braces with correction equivalent to standard braces. This design platform has the potential to further improve brace correction efficiency and its compliance

    Reconstruction simplifiée du tronc pour le traitement de la scoliose idiopathique par corset

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l’adolescent (SIA) est une dĂ©formation tridimensionnelle de la colonne vertĂ©brale, de la cage thoracique et du bassin qui apparaĂźt lors de la croissance. Des dĂ©formations de la colonne vertĂ©brale avec des courbes de 10° ou plus nĂ©cessitant un suivi ou un traitement affectent 0,23 % de la population. L’incidence est plus Ă©levĂ©e chez les filles. Pour les patients en croissance avec des courbes entre 25° et 45°, le traitement prescrit habituellement est le corset orthopĂ©dique. En AmĂ©rique du Nord, le type le plus utilisĂ© est le corset de Boston. Autrefois fabriquĂ© avec des moules de plĂątre, la production du corset a fortement Ă©tĂ© amĂ©liorĂ©e par l’ajout de technologies permettant la conception et fabrication assistĂ©es par ordinateur (CFAO). Ces nouvelles techniques de production incluent entre autres l’acquisition numĂ©rique de la forme externe du tronc du patient par topographie de surface et la modification de celle-ci Ă  l’aide de logiciels de CFAO destinĂ©s Ă  la fabrication d’orthĂšses. La conception des corsets repose par contre sur des processus empiriques et, de maniĂšre gĂ©nĂ©rale, les spĂ©cialistes n’arrivent pas Ă  un consensus sur le design optimal. Afin d’amĂ©liorer l’efficacitĂ© du corset par la vĂ©rification de son effet immĂ©diat avant que celui-ci ne soit fabriquĂ© et portĂ© par le patient, un outil de simulation exploitant une mĂ©thode de simulation par Ă©lĂ©ments finis des corrections du corset sur le tronc du patient a Ă©tĂ© dĂ©veloppĂ©. Plusieurs travaux de recherche utilisant cet outil de simulation ont Ă©tĂ© rĂ©alisĂ©s par le groupe du CHU Sainte-Justine et de l’École Polytechnique. Les rĂ©sultats d’une Ă©tude clinique ont montrĂ© que la mĂ©thode de simulation du corset prĂ©disait avec une prĂ©cision de 5° d'angle de Cobb les corrections obtenues avec les corsets fabriquĂ©s par CFAO portĂ©s par les patients. RĂ©cemment, une Ă©tude par essai randomisĂ© contrĂŽlĂ© a montrĂ© que l’ajout des simulations numĂ©riques par Ă©lĂ©ments finis du corset au processus de conception et fabrication assistĂ©es par ordinateur permettait d’obtenir des corsets plus lĂ©gers et offrant une meilleure correction. L’outil de simulation requiert une reconstruction personnalisĂ©e du tronc du patient dont la modĂ©lisation des structures osseuses internes est obtenue minimalement Ă  partir de radiographies coronale et latĂ©rale calibrĂ©es du patient. Cependant, plusieurs centres n’effectuent pas de calibrage des radiographies ou n’effectuent pas de radiographie latĂ©rale, ce qui limite l’utilisation de l’outil de simulation.----------ABSTRACT Adolescent idiopathic scoliosis (SIA) is a three-dimensional deformity of the spine, rib cage and pelvis occurring during growth. 0.23% of the population, mostly girls, is affected by progressing spinal curves of 10° or more. For growing patients with curves between 25° and 45 °, orthopedic brace is the treatment usually prescribed. In North America, the most common type is the Boston brace. Formerly made from plaster molds, the braces’ production efficiency has been greatly improved by adding computer-aided design and manufacturing (CAD / CAM) technologies. These new production techniques include the numerical acquisition of the external shape of the patient's trunk and the modification of the latter with a CAD / CAM software for orthosis production. However, braces’ design is the result of an empirical process and, in general, experts do not reach a consensus on the optimal design. In order to improve the effectiveness of the brace by testing its immediate effect before being manufactured and worn by the patient, a simulation tool using a finite element simulation method of the installation of the brace on a personalized patient’s trunk model was developed. Several research studies using this simulation tool were done by the CHU Sainte-Justine and Polytechnique group. Results of a clinical study showed that the brace simulation method predicted corrections obtained with the brace made by CAD/CAM and worn by the patient within 5° Cobb angle accuracy. Recently, a randomized controlled trial study demonstrated that adding finite element numerical simulations to computer-aided design and fabrication process provided lighter braces and achieved better correction by the brace. The simulation tool requires a personalized reconstruction of the patient's trunk which the internal bone structures’ modeling is obtained minimally from a coronal and a lateral calibrated X-rays of the patient. However, several healthcare centers do not calibrate the radiographs or do not perform lateral X-rays, which limits the use of the simulation tool. To undertake this need, the aim of this Master's project was to develop a simplified 3D reconstruction method of the patient's trunk with only a postero-anterior radiograph and a trunk surface scan. Clinical measurements differences were obtained before and after simulation of the installation of the brace on the finite elements model reconstructed with the simplified method and obtained with the reference method which included a lateral X-ray

    DĂ©veloppement d’une mĂ©thode de conception des corsets pour amĂ©liorer le confort et l’efficacitĂ© du traitement de la scoliose idiopathique

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l’adolescent (SIA) est une dĂ©formation tridimensionnelle (3D) qui affecte l’anatomie et la biomĂ©canique de la colonne vertĂ©brale, de la cage thoracique et du bassin. Environ 3 Ă  4% de la population, principalement des filles, en ait atteint lors de la poussĂ©e de croissance Ă  l’adolescence. Dans le cas d’une progression de la dĂ©formation, une prise en charge de la maladie sera nĂ©cessaire. Pour les dĂ©formations modĂ©rĂ©es (angle de Cobb entre 20° et 45˚), un traitement prĂ©ventif par corset est gĂ©nĂ©ralement prescrit pour stopper la progression des courbures scoliotiques, et Ă©viter la chirurgie. Bien qu’il existe plusieurs types de corset, celui le plus utilisĂ© en AmĂ©rique de Nord est une orthĂšse thoraco-lombo-sacrale (TLSO) de type Boston. Ces corsets doivent ĂȘtre portĂ©s 23 heures par jour durant toute la durĂ©e de la croissance. La participation et la tolĂ©rance du patient au traitement constitue un problĂšme ayant un impact sur l’efficacitĂ© du traitement. En effet, le rĂ©sultat Ă  long terme du traitement dĂ©pend non seulement de la correction immĂ©diate de la dĂ©formation scoliotique, mais aussi du temps de port de l’orthĂšse. Les facteurs considĂ©rĂ©s comme ayant le plus d’influence sur la participation au traitement sont le manque d’esthĂ©tisme et l’inconfort du traitement. Les Ă©lĂ©ments d’inconfort les plus souvent nommĂ©s sont de la douleur causĂ©e par de trop grandes pressions appliquĂ©es, de l’humiditĂ© et une restriction de mobilitĂ© du segment du tronc. Dans le cadre de travaux prĂ©cĂ©demment rĂ©alisĂ©s par le groupe du CHU Sainte-Justine et de l’École Polytechnique, une plateforme de conception de corset assistĂ©e par ordinateur a Ă©tĂ© crĂ©Ă©e. Cette plateforme combine l’utilisation d’un logiciel de design de corset (CFAO) et d’un outil de simulation permettant de simuler l’installation d’un corset sur un modĂšle Ă©lĂ©ments finis (MEF) personnalisĂ© du tronc d’un patient. L’outil de simulation permet de tester itĂ©rativement plusieurs designs de corset et de sĂ©lectionner le design permettant d’atteindre une meilleure correction du rachis. En reliant le logiciel de design Ă  une fraiseuse numĂ©rique, il est possible de fabriquer le corset sĂ©lectionnĂ© et de le tester cliniquement. La faisabilitĂ© de cette mĂ©thode a Ă©tĂ© validĂ©e cliniquement sur une cohorte de 6 patients SIA. Les rĂ©sultats obtenus ont montrĂ© que la simulation prĂ©disait des rĂ©sultats rĂ©alistes et que l’efficacitĂ© des corsets conçus par cette plate-forme Ă©tait comparable Ă  l’efficacitĂ© des corsets de Boston standard. Toutefois, cet outil ne considĂ©rait pas les Ă©lĂ©ments de confort qui peuvent influencer la participation du patient et l’effet Ă  long terme du traitement.----------ABSTRACT Adolescent idiopathic scoliosis (AIS) is a three-dimensional (3D) deformation that affects the anatomy and the biomechanic of the spine, rib cage and pelvis. Approximately 3-4% of the population, mainly girls, will be affected by this pathology. In the case of the progression of the curves, a treatment prescription will be necessary. For moderate cases (Cobb angle between 20˚ and 45˚), a preventive brace treatment is generally prescribed to stop the progression and avoid surgery. Although there are several types of brace, the most widely used in North America is a Boston-type thoraco-lumbo-sacral orthosis (TLSO). This brace has to be worn 23 hours per day during the patient growth. Patient’s participation and tolerance to the treatment remains a recurrent issue influencing brace treatment efficacy. The long-term treatment outcome depends not only on the immediate brace’s spinal correction but also on the brace wear time. Main factors having an influence on patients’ compliance to treatment are the treatment’s lack of aesthetics and the discomfort felt during the brace wear. The main discomfort parameters are the pressure applied which can be too strong and cause pain, humidity and a lack of mobility of the trunk segment. In previous work by research teams at both CHU Ste-Justine and Ecole Polytechnique de Montreal, a computer assisted brace design platform was created. The platform combines the use of a brace design software (CFAO) and a simulation tool which can simulate the brace installation using a finite element model (FEM) of the patient's torso. This simulation tool can be used to test several iterative brace design and to select the design that allows the best spine correction. By linking the brace design software to a 3D carver, it is possible to fabricate the brace and to test the clinical installation. The feasibility of this method has been clinically validated on a cohort of 6 SIA patients. The outcomes showed that the simulation results were reliable and that the effectiveness of the braces designed by this platform was equivalent to the effectiveness of the standard Boston-type brace. However, the simulation tool does not consider comfort parameters that can influence patients’ participation and the long-term treatment effectiveness. The objective of this study was to design and experimentally validate on a SIA patient cohort a more comfortable and biomechanically efficient orthopaedic brace by integrating comfor

    Approche intégrée de conception biomécanique de corsets pour le traitement de la scoliose idiopathique de l'adolescent

    Get PDF
    RÉSUMÉ La scoliose idiopathique de l'adolescent (SIA) gĂ©nĂšre des dĂ©formations complexes tridimensionnelles (3D) de la colonne vertĂ©brale, de la cage thoracique et du bassin. De 3 Ă  4 % de la population est atteint par cette maladie, principalement des filles adolescentes durant leur poussĂ©e de croissance. Cette pathologie peut mettre en danger la santĂ© de l’individu, advenant une progression de la dĂ©formation du rachis. Dans ces cas, une chirurgie, permettant de redresser la colonne vertĂ©brale grĂące Ă  des tiges et vis mĂ©talliques, est nĂ©cessaire. Cette chirurgie est trĂšs invasive et comporte certains risques (notamment vasculaire et nerveux). Des traitements moins invasifs sont disponibles pour prĂ©venir la progression des courbures. Pour des courbures moyennes, un traitement par port de corset (orthĂšse pour le tronc) est gĂ©nĂ©ralement utilisĂ©. Le corset de Boston est le traitement standard utilisĂ© en AmĂ©rique du Nord. Sa conception est effectuĂ©e de façon empirique Ă  l’aide de l’évaluation de radiographies. Il existe d’autres types de corsets disponibles sur le marchĂ©. Seulement, leur efficacitĂ© est variable et imprĂ©visible. Cette grande variĂ©tĂ© de concepts de corset est dĂ» au fait que l’action biomĂ©canique de la correction des corsets est mĂ©connue. Une plateforme, assistĂ©e par ordinateur, de conception de corset a Ă©tĂ© crĂ©Ă©e Ă  la suite de travaux prĂ©curseurs sur le dĂ©veloppement d’un modĂšle par Ă©lĂ©ments finis (MEF) du tronc humain. Cette plateforme permet d’effectuer la conception d’un corset Ă  l’aide d’un outil de conception assistĂ©e par ordinateur (CAO) ainsi que de simuler son installation sur le MEF du tronc. La simulation permet de prĂ©dire l’efficacitĂ© immĂ©diate du corset avant sa fabrication. Celui-ci peut dĂšs lors ĂȘtre itĂ©rativement amĂ©liorĂ© Ă  l’aide de cet outil, jusqu'Ă  ce que l’efficacitĂ© du corset soit jugĂ©e suffisante. Le corset peut alors ĂȘtre fabriquĂ© avec un systĂšme de fabrication assistĂ©e par ordinateur (FAO) liĂ© Ă  une fraiseuse numĂ©rique 3D. Cette plateforme permet la rationalisation de la conception de corset. Cet outil a besoin de validation clinique afin d’ĂȘtre utilisĂ© pour crĂ©er des corsets efficaces de façon constante. L’objectif de cette Ă©tude Ă©tait de vĂ©rifier la faisabilitĂ© d’utiliser la nouvelle plateforme de conception pour fabriquer des corsets pour les patients SIA. L’efficacitĂ© des nouveaux corsets a Ă©tĂ© comparĂ©e ensuite aux prĂ©dictions de la simulation ainsi qu’à un systĂšme de corsets standards. Deux corsets ont Ă©tĂ© fabriquĂ©s pour six patients SIA. Le premier corset a Ă©tĂ© crĂ©Ă© Ă  l’aide de la nouvelle plateforme de conception (Nouveau Corset). Ce dernier est basĂ© sur une reconstruction----------ABSTRACT Adolescent idiopathic scoliosis (AIS) generates complex tridimensional deformities of the spine, rib cage and pelvis. It affects around 3-4% of the population, mainly female adolescents during their growth spurt. This pathology can be health threatening. If severe spinal curvature progression occurs, a surgery is necessary to straighten the spine using metal rods and screws. This surgery is very invasive and involves certain risks (mainly vascular and nervous). Conservative treatments are available to prevent curve progression. For moderate curves, braces (torso orthosis) are generally used as treatment. The standard brace used in North America is the Boston brace system. Its design is currently done mostly empirically based on assessments of radiographs. Other brace designs are available on the market; however their efficacy is variable and unpredictable. This wide brace design variety is due to the fact that brace biomechanical actions are not fully understood. Based on previous work on the development of a personalized finite element model (FEM) of a human torso, a computer assisted brace design platform was created. This platform allows brace design through Computer Assisted Design (CAD) and brace installation simulation on the FEM of the trunk. The simulation allows predicting initial brace efficacy, prior to the brace fabrication. The brace design can be iteratively improved using this tool until brace efficacy is considered sufficient and the brace can be fabricated using Computer Assisted Manufacturing (CAM) linked to a 3D carver. This platform permits the rationalization of brace design. This tool needs to be clinically validated to be used to create consistently efficient braces for clinical use. The objective of this study is to assess the feasibility of using the new design platform to build braces for AIS patients. The effectiveness of the braces issued from this process need to be compared to the predicted outcome of the simulations and to a standard bracing system. To do so, two braces were fabricated for six AIS patients. The first brace was created using the new design platform (NewBrace). The latter is based on a 3D reconstruction of the spine, pelvis and rib cage of each patient, computed from bi-planar (postero-anterior and lateral) calibrated radiographs. The external torso surface geometry is acquired using a surface topography technology (MoirĂ© fringe digitization system). The internal and external geometries are registered together using radiopaque markers and the registered geometries are converted to a biomechanical FEM. This model is used to virtually correct the spinal deformities in th

    2011 SOSORT guidelines: Orthopaedic and Rehabilitation treatment of idiopathic scoliosis during growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The International Scientific Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT), that produced its first Guidelines in 2005, felt the need to revise them and increase their scientific quality. The aim is to offer to all professionals and their patients an evidence-based updated review of the actual evidence on conservative treatment of idiopathic scoliosis (CTIS).</p> <p>Methods</p> <p>All types of professionals (specialty physicians, and allied health professionals) engaged in CTIS have been involved together with a methodologist and a patient representative. A review of all the relevant literature and of the existing Guidelines have been performed. Documents, recommendations, and practical approach flow charts have been developed according to a Delphi procedure. A methodological and practical review has been made, and a final Consensus Session was held during the 2011 Barcelona SOSORT Meeting.</p> <p>Results</p> <p>The contents of the document are: methodology; generalities on idiopathic scoliosis; approach to CTIS in different patients, with practical flow-charts; literature review and recommendations on assessment, bracing, physiotherapy, Physiotherapeutic Specific Exercises (PSE) and other CTIS. Sixty-five recommendations have been given, divided in the following topics: Bracing (20 recommendations), PSE to prevent scoliosis progression during growth (8), PSE during brace treatment and surgical therapy (5), Other conservative treatments (3), Respiratory function and exercises (3), Sports activities (6), Assessment (20). No recommendations reached a Strength of Evidence level I; 2 were level II; 7 level III; and 20 level IV; through the Consensus procedure 26 reached level V and 10 level VI. The Strength of Recommendations was Grade A for 13, B for 49 and C for 3; none had grade D.</p> <p>Conclusion</p> <p>These Guidelines have been a big effort of SOSORT to paint the actual situation of CTIS, starting from the evidence, and filling all the gray areas using a scientific method. According to results, it is possible to understand the lack of research in general on CTIS. SOSORT invites researchers to join, and clinicians to develop good research strategies to allow in the future to support or refute these recommendations according to new and stronger evidence.</p

    Évaluation biomĂ©canique du corset de providence pour le traitement conservateur de la scoliose

    Get PDF
    RÉSUMÉ La scoliose idiopathique adolescente (SIA) est une dĂ©formation tridimensionnelle de la colonne vertĂ©brale et de la cage thoracique. Elle touche 2-3 % de la population adolescente, dont 10% nĂ©cessiteront un traitement. Les patients avec une courbe entre 20-45° reçoivent un traitement conservateur par corset. Les forces correctrices agissant sur le rachis dĂ©pendent du design et de l’ajustement du corset, ainsi que de la posture et des sollicitations musculaires du patient. Les orthĂšses thoraco-lombo-sacrĂ©s (TLSOs) sont utilisĂ©s pour les courbes modĂ©rĂ©es avec un apex infĂ©rieur Ă  la 8Ăšme vertĂšbre thoracique (T8). Comme le corset est habituellement portĂ© 23 heures par jour, son mĂ©canisme d’action n’apparaĂźt pas optimal. Des corsets "de nuit" existent, et ils visent Ă  amĂ©liorer l’adhĂ©rence du patient et Ă  introduire une correction active de nuit, et une plus grande latitude le jour, permettant au patient de participer aux activitĂ©s sportives. Les corsets de nuit ont moins d’effets nĂ©gatifs sur le fonctionnement psycho-social, le sommeil, le mal au dos, et l’image du corps. Le corset de nuit de Providence a Ă©tĂ© introduit en 1992. Des forces latĂ©rales et rotationnelles directes sont appliquĂ©es au sommet des courbes Ă  travers un systĂšme de 3 points d’appui. AprĂšs la prise de mesures, le corset est fabriquĂ© en utilisant une technique de conception/fabrication assistĂ©e par ordinateur (CFAO). Souvent, une surcorrection est observĂ©e sur les radiographies en position couchĂ©e dans le corset. Les premiers rĂ©sultats de l’application du corset de Providence ont Ă©tĂ© prĂ©sentĂ©s en 2001. Les concepteurs du corset rapportent une correction moyenne de 90% pour les courbes doubles, et encore une meilleure correction pour les courbes simples. Le taux de rĂ©ussite global est de 50% Ă  75%. La position couchĂ©e est Ă©galement connue pour rĂ©duire les courbes scoliotiques, en particulier lors de chirurgies d'instrumentation. De nouvelles approches de simulation de corset basĂ©es sur des modĂšles numĂ©riques par Ă©lĂ©ments finis permettent dorĂ©navant de tester de façon virtuelle et d’optimiser l’effet des corsets pour des patients donnĂ©s avant leur fabrication. Les corsets TLSOs sont maintenant simulĂ©s avec une reprĂ©sentation rĂ©aliste de l'interface de contact entre le tronc et le corset du patient. MalgrĂ© le fait que le corset de Providence est disponible depuis plus de 20 ans, la biomĂ©canique de ce traitement ainsi que l'effet des paramĂštres de conception de corset et de la position couchĂ©e ne sont toujours pas bien dĂ©crites. Le modĂšle CFAO est choisi parmi une banque de donnĂ©es de corset sur la base de l'inventaire de moule, puis soumis Ă  une dĂ©rotation de la section thoracique. Cependant, l'impact de la conception et des ajustements du corset sur les rĂ©sultats ne sont pas bien compris, car aucune mĂ©thode d'Ă©valuation n’est utilisĂ©e avant la fabrication.L'objectif de ce projet Ă©tait donc de modĂ©liser la biomĂ©canique et d'Ă©valuer le corset de nuit de Providence pour le traitement de la scoliose idiopathique de l'adolescent afin de mieux comprendre son mode d'action.----------ABSTRACT Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformation of the spine and rib cage. It affects 2-3% of the adolescent population, of which 10% will require treatment. Patients with a curve between 20-45° usually receive a conservative treatment by brace. Corrective forces acting on the spine depend on the design and adjustment of the brace, as well as the posture and muscular activity of the patient. Thoracolumbosacral orthoses (TLSOs) are commonly used for moderate curves with an apex inferior to the 8th thoracic vertebra (T8). As the brace is usually worn 23 hours a day, its mechanism of action seems not optimal. “Nighttime” braces exist, and they are designed to improve patient adherence and to introduce an active correction by allowing the patient to participate in sports activities. Nighttime braces have less negative impact on the psycho-social functioning, sleep, back pain and body image. Providence nighttime brace was introduced in 1992. Direct lateral and rotational forces are applied on the summits of curves through a 3-point pressure system with bolsters. After taking measurements, the brace is manufactured using computer-aided design and manufacturing (CAD/CAM) technique. An overcorrection is often observed on supine in-brace radiographs. The first results of the application of Providence brace were presented in 2001. Its designers claim an average in-brace correction of 90% for double curves, and a better correction for simple curves. Overall success rate is 50% to 75%. The prone position is also known to reduce the scoliotic curves, especially during instrumentation surgeries. New brace simulation approaches based on numerical finite element models (FEM) are now used to test virtually and optimize the effect of braces on given patients before their manufacturing. TLSOs are now simulated with a realistic representation of the contact interface between the trunk and the patient's brace. Despite the fact that the Providence brace has been available for more than 20 years, the biomechanics of this treatment and the effect of the brace design parameters and supine position are still not well described. The CAD/CAM model is selected from a brace database based on mold inventory, then subjected to derotation of the thoracic section. However, the impact of brace design and adjustments on outcomes are not well understood, as no assessment method is used prior to brace fabrication. Hence the objective of this project was to model and evaluate the biomechanics of nighttime Providence brace for the treatment of idiopathic adolescent scoliosis to better understand its mode of action. The hypotheses we addressed were that the biomechanical simulation tool allows to realistically simulate the application of the nighttime brace for the treatment of scoliosis, and that the supine position has an important role in the correction mechanism

    A Passive Brace for the Treatment of Scoliosis Utilizing Compliant Mechanisms

    Get PDF
    Adolescent idiopathic scoliosis is a deformity of the spine that affects 2-3% of the population and often requires treatment in the form of a brace. Most successful braces consist of a rigid plastic shell that can be uncomfortable and limit the patient\u27s ability to perform activities of daily living. The greatest cause of treatment failure is patient unwillingness to wear the brace for the prescribed amount of time, up to 23 hours each day. Other flexible braces have been designed to overcome this obstacle, but they have a lower success rate and other drawbacks. It was proposed in this thesis that compliant mechanisms can provide the lateral stiffness required for correction combined with compliance in other directions since they naturally offer relativestiffness and compliance directions. Throughout the process of designing the brace, multiple valuable contributions were generated for various fields of study. The development of the kinematic profile of the spine included determining the locations of the three primary spinal motions and specific axes of rotation for each motion. A corrective force paradigm was used for design rather than the standard displacement paradigm, therefore, requiring a complete understanding of the force profile applied by the brace, which is not found in literature. The force system was determined through an integration of the pressure applied to the torso by a brace. In order to design in 3-dimensions, the Building Block Approach for compliant mechanism synthesis was expanded. This method was used to design the overall mechanism topology. Finally, an iteration of the brace was designed, produced, and tested. Overall, the tools necessary to design a compliant scoliosis brace were developed and can now be easily used to iterate through designs

    Estimating Symmetry/Asymmetry in the Human Torso: A Novel Computational Method

    Get PDF
    Asymmetry in human body has largely been based on bilateral traits and/or subjective estimates, with potential usage in fields such as medicine, rehabilitation and apparel product design. In case of apparel, asymmetry in human body has been measured primarily by estimating differential linear measurement of bilateral traits. However, the characteristics of asymmetry can be better understood and be useful for clinicians and designers if it is quantified by considering the whole 3D surface. To address the prevailing issues in measuring asymmetry objectively, this research attempts to develop a novel method to quantify asymmetry that is robust, effective and non-invasive in operation. The method discussed here uses 3D scans of human torso to estimate asymmetry as a numerical index. Furthermore, using skeletal landmarks, twist and tilt measurements of the torsos are computed numerically. Together, these three measures can characterize the asymmetric/symmetric nature of a human torso. The approach taken in this research uses cross sections of torso to estimate local plane of symmetry that equi-divides a given cross section on the basis of its area, and connecting those planes to form a global surface that divides the torso volumetrically. The computational approach in estimating the area of cross section is based on the Green's theorem. The developed method was validated by both testing it on a known geometric model and by comparing the estimated index with subjective ratings by experts. This method has potential applications in various fields requiring characterizing asymmetry i.e., in case of scoliosis patients as diagnostic tool or an evaluation metric for rehabilitation efficiency, for body builders, and fashion models as an evaluation tool.Design, Housing and Merchandisin

    A review of the effectiveness of lower limb orthoses used in cerebral palsy

    Get PDF
    To produce this review, a systematic literature search was conducted for relevant articles published in the period between the date of the previous ISPO consensus conference report on cerebral palsy (1994) and April 2008. The search terms were 'cerebral and pals* (palsy, palsies), 'hemiplegia', 'diplegia', 'orthos*' (orthoses, orthosis) orthot* (orthotic, orthotics), brace or AFO
    • 

    corecore