161 research outputs found

    Dielectrics - Digest of literature, volume 28, 1964

    Get PDF
    Dielectric constants, dipole moments, relaxation times, conduction phenomena, insulating films, breakdown, materials, and applications of dielectrics - annotated bibliograph

    Chemical approaches to ubiquitous computing

    Get PDF
    Dissertação apresentada para obtenção do Grau de Doutor em Química, perfil de Química Física, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologi

    Recent Perspectives in Pyrolysis Research

    Get PDF
    Recent Perspectives in Pyrolysis Research presents and discusses different routes of pyrolytic conversions. It contains exhaustive and comprehensive reports and studies of the use of pyrolysis for energy and materials production and waste management

    Polymer Processing and Surfaces

    Get PDF
    This book focuses on fundamental and applied research on polymer processing and its effect on the final surface as the optimization of polymer surface properties results in the unique applicability of these over other materials. The development and testing of the next generation of polymeric and composite materials is of particular interest. Special attention is given to polymer surface modification, external stimuli-responsive surfaces, coatings, adhesion, polymer and composites fatigue analysis, evaluation of the surface quality and microhardness, processing parameter optimization, characterization techniques, among others

    Reinforced Polymer Composites

    Get PDF
    This book, consisting of 21 articles, including three review papers, written by research groups of experts in the field, considers recent research on reinforced polymer composites. Most of them relate to the fiber-reinforced polymer composites, which are a real hot topic in the field. Depending on the reinforcing fiber nature, such composites are divided into synthetic and natural fiber-reinforced ones. Synthetic fibers, such as carbon, glass, or basalt, provide more stiffness, while natural fibers, such as jute, flax, bamboo, kenaf, and others, are inexpensive and biodegradable, making them environmentally friendly. To acquire the benefits of design flexibility and recycling possibilities, natural reinforcers can be hybridized with small amounts of synthetic fibers to make them more desirable for technical applications. Elaborated composites have great potential as structural materials in automotive, marine and aerospace application, as fire resistant concrete, in bridge systems, as mechanical gear pair, as biomedical materials for dentistry and orthopedic application and tissue engineering, as well as functional materials such as proton-exchange membranes, biodegradable superabsorbent resins and polymer electrolytes

    Temperature Dependence and Touch Sensitivity of Electrical Transport in Novel Nanocomposite Printable Inks

    Get PDF
    Printed electronics is an established industry allowing the production of electronic components such as resistors, and more complex structures such as solar cells, from functional inks. Composites, a mixture of two or more materials with different physical and/or chemical properties that combine to create a new material with properties differing from its constituent parts, have been important in areas such as the textile and automotive industries, and are significant in printed electronics as inks for printed circuit components, touch and vapour sensors. Here, the functional performance and physical behaviour of two screen printable multi-component nanocomposite inks, formulated for touch-pressure sensing applications, are investigated. They each comprise a proprietary mixture of electrically conducting and insulating nanoparticles dispersed in an insulating polymer binder, where one is opaque and the other transparent. The opaque ink has a complex surface structure consisting of a homogeneous dispersion of nanoparticles. The transparent inks structure is characterised by large aggregates of nanoparticles distributed through the printed layer. Temperature dependent electrical transport measurements under a range of compressive loadings reveal similar non-linear behaviour in both inks, with some hysteresis observed, and this behaviour is linked to the inks structures. A physical model comprising a combination of linear and non-linear conduction contributions, with the linear term attributed to direct connections between conductive particles and the non-linear term attributed to field-assisted quantum tunnelling, has been developed and used successfully to describe the underpinning physical processes behind the unique electrical functionality of the opaque ink and, to a lesser extent, the transparent ink

    Research in materials, science and engineering Annual report 1965-1966

    Get PDF
    Research projects in materials engineering and science, and solid state, plasma, and low temperature physic

    Biocomposites

    Get PDF
    Biocomposites are composite materials consisting of either a polymer matrix or a filler based on biological resources. They have been widely used in numerous applications such as storage devices, photocatalysts, packaging, furniture, biosensors, energy, construction, the automotive industry, and so on due to their great versatility and satisfactory performance. This book focuses on composites made from natural materials (natural fibers and biopolymers) and relates their physical, mechanical, electrical, structural, and biological characteristics as well as their potential applications in biomedicine, pharmaceuticals, and engineering

    Thermal protection properties of aerogel-coated Kevlar woven fabrics

    Get PDF
    This paper investigated the thermal properties of aerogel-coated Kevlar fabrics under both the ambient temperature and high temperature with laser radiation. It is found that the aerogels combined with a Kevlar fabric contribute to a higher thermal insulation value. Under laser radiation with high temperature, the aerogel content plays a vital role on the surface temperature of the fabrics. At laser radiations with pixel time 330 μs, the surface temperatures of the aerogel coated Kevlar fabrics are 400-440°C lower than that of the uncoated fabric. Results also show that the fabric temperature is directly proportional to pixel time. It can be concluded that the Kevlar fabrics coated with silica aerogel provides better thermal protection under high temperature
    corecore