948 research outputs found

    Automatic Cataract Detection Using the Convolutional Neural Network and Digital Camera Images

    Get PDF
    Background: The cataract is the most prevalent cause of blindness worldwide and is responsible for more than 51 % of blindness cases. As the treatment process is becoming smart and the burden of ophthalmologists is reducing, many existing systems have adopted machine-learning-based cataract classification methods with manual extraction of data features. However, the manual extraction of retinal features is generally time-consuming and exhausting and requires skilled ophthalmologists. Material and Methods: Convolutional neural network (CNN) is a highly common automatic feature extraction model which, compared to machine learning approaches, requires much larger datasets to avoid overfitting issues. This article designs a deep convolutional network for automatic cataract recognition in healthy eyes. The algorithm consists of four convolution layers and a fully connected layer for hierarchical feature learning and training. Results: The proposed approach was tested on collected images and indicated an 90.88 % accuracy on testing data. The keras model provides a function that evaluates the model, which is equal to the value of 84.14 %, the model can be further developed and improved to be applied for the automatic recognition and treatment of ocular diseases. Conclusion: This study presented a deep learning algorithm for the automatic recognition of healthy eyes from cataractous ones. The results suggest that the proposed scheme outperforms other conventional methods and can be regarded as a reference for other retinal disorders

    Accelerating precision ophthalmology: recent advances

    Get PDF
    Introduction: The future of ophthalmology is precision medicine. With a growing incidence of lifestyle-associated ophthalmic disease such as diabetic retinopathy, the use of technology has the potential to overcome the burden on clinical specialists. Advances in precision medicine will help improve diagnosis and better triage those with higher clinical need to the appropriate experts, as well as providing a more tailored approach to treatment that could help transform patient management. Areas covered: A detailed literature review was conducted using OVID Medline and PubMed databases to explore advances in precision medicine within the areas of retinal disease, glaucoma, cornea, cataracts and uveitis. Over the last three years [2019–2022] are explored, particularly discussing technological and genomic advances in screening, diagnosis, and management within these fields. Expert opinion: Artificial intelligence and its subspecialty deep learning provide the most substantial ways in which diagnosis and management of ocular diseases can be further developed within the advancing field of precision medicine. Future challenges include optimal training sets for algorithms and further developing pharmacogenetics in more specialized areas

    A Review of the Management of Eye Diseases Using Artificial Intelligence, Machine Learning, and Deep Learning in Conjunction with Recent Research on Eye Health Problems: Eye Microbiome

    Get PDF
    In the field of computer science, Artificial Intelligence can be considered one of the branches that study the development of algorithms that mimic certain aspects of human intelligence. Over the past few years, there has been a rapid advancement in the technology of computer-aided diagnosis (CAD). This in turn has led to an increase in the use of deep learning methods in a variety of applications. For us to be able to understand how AI can be used in order to recognize eye diseases, it is crucial that we have a deep understanding of how AI works in its core concepts. This paper aims to describe the most recent and applicable uses of artificial intelligence in the various fields of ophthalmology disease

    A Deep Learning Approach to Denoise Optical Coherence Tomography Images of the Optic Nerve Head

    Full text link
    Purpose: To develop a deep learning approach to de-noise optical coherence tomography (OCT) B-scans of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device (Spectralis) for both eyes of 20 subjects. For each eye, single-frame (without signal averaging), and multi-frame (75x signal averaging) volume scans were obtained. A custom deep learning network was then designed and trained with 2,328 "clean B-scans" (multi-frame B-scans), and their corresponding "noisy B-scans" (clean B-scans + gaussian noise) to de-noise the single-frame B-scans. The performance of the de-noising algorithm was assessed qualitatively, and quantitatively on 1,552 B-scans using the signal to noise ratio (SNR), contrast to noise ratio (CNR), and mean structural similarity index metrics (MSSIM). Results: The proposed algorithm successfully denoised unseen single-frame OCT B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean SNR increased from 4.02±0.684.02 \pm 0.68 dB (single-frame) to 8.14±1.038.14 \pm 1.03 dB (denoised). For all the ONH tissues, the mean CNR increased from 3.50±0.563.50 \pm 0.56 (single-frame) to 7.63±1.817.63 \pm 1.81 (denoised). The MSSIM increased from 0.13±0.020.13 \pm 0.02 (single frame) to 0.65±0.030.65 \pm 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Conclusions: Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort
    corecore