38 research outputs found

    Automated Detection of Leakage in Fluorescein Angiography Images with Application to Malarial Retinopathy

    Get PDF
    The detection and assessment of leakage in retinal fluorescein angiogram images is important for the management of a wide range of retinal diseases. We have developed a framework that can automatically detect three types of leakage (large focal, punctate focal, and vessel segment leakage) and validated it on images from patients with malarial retinopathy. This framework comprises three steps: vessel segmentation, saliency feature generation and leakage detection. We tested the effectiveness of this framework by applying it to images from 20 patients with large focal leak, 10 patients with punctate focal leak, and 5,846 vessel segments from 10 patients with vessel leakage. The sensitivity in detecting large focal, punctate focal and vessel segment leakage are 95%, 82% and 81%, respectively, when compared to manual annotation by expert human observers. Our framework has the potential to become a powerful new tool for studying malarial retinopathy, and other conditions involving retinal leakage

    Detection and Classification of Diabetic Retinopathy Pathologies in Fundus Images

    Get PDF
    Diabetic Retinopathy (DR) is a disease that affects up to 80% of diabetics around the world. It is the second greatest cause of blindness in the Western world, and one of the leading causes of blindness in the U.S. Many studies have demonstrated that early treatment can reduce the number of sight-threatening DR cases, mitigating the medical and economic impact of the disease. Accurate, early detection of eye disease is important because of its potential to reduce rates of blindness worldwide. Retinal photography for DR has been promoted for decades for its utility in both disease screening and clinical research studies. In recent years, several research centers have presented systems to detect pathology in retinal images. However, these approaches apply specialized algorithms to detect specific types of lesion in the retina. In order to detect multiple lesions, these systems generally implement multiple algorithms. Furthermore, some of these studies evaluate their algorithms on a single dataset, thus avoiding potential problems associated with the differences in fundus imaging devices, such as camera resolution. These methodologies primarily employ bottom-up approaches, in which the accurate segmentation of all the lesions in the retina is the basis for correct determination. A disadvantage of bottom-up approaches is that they rely on the accurate segmentation of all lesions in order to measure performance. On the other hand, top-down approaches do not depend on the segmentation of specific lesions. Thus, top-down methods can potentially detect abnormalities not explicitly used in their training phase. A disadvantage of these methods is that they cannot identify specific pathologies and require large datasets to build their training models. In this dissertation, I merged the advantages of the top-down and bottom-up approaches to detect DR with high accuracy. First, I developed an algorithm based on a top-down approach to detect abnormalities in the retina due to DR. By doing so, I was able to evaluate DR pathologies other than microaneurysms and exudates, which are the main focus of most current approaches. In addition, I demonstrated good generalization capacity of this algorithm by applying it to other eye diseases, such as age-related macular degeneration. Due to the fact that high accuracy is required for sight-threatening conditions, I developed two bottom-up approaches, since it has been proven that bottom-up approaches produce more accurate results than top-down approaches for particular structures. Consequently, I developed an algorithm to detect exudates in the macula. The presence of this pathology is considered to be a surrogate for clinical significant macular edema (CSME), a sight-threatening condition of DR. The analysis of the optic disc is usually not taken into account in DR screening systems. However, there is a pathology called neovascularization that is present in advanced stages of DR, making its detection of crucial clinical importance. In order to address this problem, I developed an algorithm to detect neovascularization in the optic disc. These algorithms are based on amplitude-modulation and frequency-modulation (AM-FM) representations, morphological image processing methods, and classification algorithms. The methods were tested on a diverse set of large databases and are considered to be the state-of the art in this field

    CAD system for early diagnosis of diabetic retinopathy based on 3D extracted imaging markers.

    Get PDF
    This dissertation makes significant contributions to the field of ophthalmology, addressing the segmentation of retinal layers and the diagnosis of diabetic retinopathy (DR). The first contribution is a novel 3D segmentation approach that leverages the patientspecific anatomy of retinal layers. This approach demonstrates superior accuracy in segmenting all retinal layers from a 3D retinal image compared to current state-of-the-art methods. It also offers enhanced speed, enabling potential clinical applications. The proposed segmentation approach holds great potential for supporting surgical planning and guidance in retinal procedures such as retinal detachment repair or macular hole closure. Surgeons can benefit from the accurate delineation of retinal layers, enabling better understanding of the anatomical structure and more effective surgical interventions. Moreover, real-time guidance systems can be developed to assist surgeons during procedures, improving overall patient outcomes. The second contribution of this dissertation is the introduction of a novel computeraided diagnosis (CAD) system for precise identification of diabetic retinopathy. The CAD system utilizes 3D-OCT imaging and employs an innovative approach that extracts two distinct features: first-order reflectivity and 3D thickness. These features are then fused and used to train and test a neural network classifier. The proposed CAD system exhibits promising results, surpassing other machine learning and deep learning algorithms commonly employed in DR detection. This demonstrates the effectiveness of the comprehensive analysis approach employed by the CAD system, which considers both low-level and high-level data from the 3D retinal layers. The CAD system presents a groundbreaking contribution to the field, as it goes beyond conventional methods, optimizing backpropagated neural networks to integrate multiple levels of information effectively. By achieving superior performance, the proposed CAD system showcases its potential in accurately diagnosing DR and aiding in the prevention of vision loss. In conclusion, this dissertation presents novel approaches for the segmentation of retinal layers and the diagnosis of diabetic retinopathy. The proposed methods exhibit significant improvements in accuracy, speed, and performance compared to existing techniques, opening new avenues for clinical applications and advancements in the field of ophthalmology. By addressing future research directions, such as testing on larger datasets, exploring alternative algorithms, and incorporating user feedback, the proposed methods can be further refined and developed into robust, accurate, and clinically valuable tools for diagnosing and monitoring retinal diseases

    Retinopathy and central nervous system microcirculatory abnormalities in adult cerebral malaria and their prediction of outcome

    Get PDF
    Introduction Malaria retinopathy is a set of visible changes in the retina which are specific to falciparum malaria. Studies to date have been mostly limited to comatose African children. Retinal changes in adults with severe malaria and severely unwell patients without malaria have been less well studied and the specificity, pathogenesis, diagnostic and prognostic value of malarial retinopathy in adults are not known. Methods A series of observational studies of retinopathy in Bangladesh, India and Malaysia were done from 2008-2012. The aims were to describe the spectrum of retinal changes in falciparum and knowlesi malaria in adults, determine their specificity for severe falciparum malaria, quantify the impact of malaria retinopathy on visual function, understand its pathogenesis and assess the potential contribution of retinopathy to confirming diagnosis of malarial coma, predicting prognosis and understanding pathogenesis of cerebral malaria. Results 495 patients were enrolled and underwent retinal photography (305 with P. falciparum malaria (112 cerebral, 68 noncerebral severe, 125 uncomplicated), 44 P. knowlesi, 43 sepsis, 41 encephalopathy and 62 healthy). Retinal whitening and white-centred haemorrhages were common and specific to severe falciparum malaria. Retinopathy was most common and severe in cerebral (88%) and fatal (91%) falciparum malaria. Moderate-severe retinopathy was 95% specific for cerebral malaria in comatose patients, and its severity correlated with depth of coma. Vessel whitening was not seen and papilloedema was rare. In noncerebral severe falciparum malaria, retinopathy predicted increased likelihood of later development of coma and death. Retinal findings in Bangladeshi children were similar to those in adults. Optic nerve sheath diameter was mildly increased and brain swelling minimal on MRI. Severity of retinopathy correlated with plasma lactate, serum bicarbonate, sequestered parasite load and red cell stiffness suggesting a central role for microvascular obstruction in the pathogenesis. Severity of retinal whitening correlated with decreased visual acuity. Conclusions Retinal changes seen in severe P. falciparum malaria in Asian adults is similar, but not identical, to that seen in African children. They have potential to help with diagnosis and prognosis of Asian adults with severe falciparum malaria. Microvascular obstruction is prominent in the pathogenesis of retinopathy and coma in adults whereas raised intracranial pressure is not

    Automated detection of proliferative diabetic retinopathy from retinal images

    Get PDF
    Diabetic retinopathy (DR) is a retinal vascular disease associated with diabetes and it is one of the most common causes of blindness worldwide. Diabetic patients regularly attend retinal screening in which digital retinal images are captured. These images undergo thorough analysis by trained individuals, which can be a very time consuming and costly task due to the large diabetic population. Therefore, this is a field that would greatly benefit from the introduction of automated detection systems. This project aims to automatically detect proliferative diabetic retinopathy (PDR), which is the most advanced stage of the disease and poses a high risk of severe visual impairment. The hallmark of PDR is neovascularisation, the growth of abnormal new vessels. Their tortuous, convoluted and obscure appearance can make them difficult to detect. In this thesis, we present a methodology based on the novel approach of creating two different segmented vessel maps. Segmentation methods include a standard line operator approach and a novel modified line operator approach. The former targets the accurate segmentation of new vessels and the latter targets the reduction of false responses to non-vessel edges. Both generated binary vessel maps hold vital information which is processed separately using a dual classification framework. Features are measured from each binary vessel map to produce two separate feature sets. Independent classification is performed for each feature set using a support vector machine (SVM) classifier. The system then combines these individual classification outcomes to produce a final decision. The proposed methodology, using a dataset of 60 images, achieves a sensitivity of 100.00% and a specificity of 92.50% on a per image basis and a sensitivity of 87.93% and a specificity of 94.40% on a per patch basis. The thesis also presents an investigation into the search for the most suitable features for the classification of PDR. This entails the expansion of the feature vector, followed by feature selection using a genetic algorithm based approach. This provides an improvement in results, which now stand at a sensitivity and specificity 3 of 100.00% and 97.50% respectively on a per image basis and 91.38% and 96.00% respectively on a per patch basis. A final extension to the project sees the framework of dual classification further explored, by comparing the results of dual SVM classification with dual ensemble classification. The results of the dual ensemble approach are deemed inferior, achieving a sensitivity and specificity of 100.00% and 95.00% respectively on a per image basis and 81.03% and 95.20% respectively on a per patch basis

    Diabetic Retinopathy Detection Using Local Extrema Quantized Haralick Features with Long Short-Term Memory Network

    Get PDF
    Diabetic retinopathy is one of the leading diseases affecting eyes. Lack of early detection and treatment can lead to total blindness of the diseased eyes. Recently, numerous researchers have attempted producing automatic diabetic retinopathy detection techniques to supplement diagnosis and early treatment of diabetic retinopathy symptoms. In this manuscript, a new approach has been proposed. The proposed approach utilizes the feature extracted from the fundus image using a local extrema information with quantized Haralick features. The quantized features encode not only the textural Haralick features but also exploit the multiresolution information of numerous symptoms in diabetic retinopathy. Long Short-Term Memory network together with local extrema pattern provides a probabilistic approach to analyze each segment of the image with higher precision which helps to suppress false positive occurrences. The proposed approach analyzes the retina vasculature and hard-exudate symptoms of diabetic retinopathy on two different public datasets. The experimental results evaluated using performance matrices such as specificity, accuracy, and sensitivity reveal promising indices. Similarly, comparison with the related state-of-the-art researches highlights the validity of the proposed method. The proposed approach performs better than most of the researches used for comparison
    corecore