539 research outputs found

    Deep brain and cortical stimulation for epilepsy

    Get PDF
    Background : Despite optimal medical treatment, including epilepsy surgery, many epilepsy patients have uncontrolled seizures. In the last decades, interest has grown in invasive intracranial neurostimulation as a treatment for these patients. Intracranial stimulation includes both deep brain stimulation (DBS) (stimulation through depth electrodes) and cortical stimulation (subdural electrodes). Objectives : To assess the efficacy, safety and tolerability of deep brain and cortical stimulation for refractory epilepsy based on randomized controlled trials. Search methods : We searched PubMed (6 August 2013), the Cochrane Epilepsy Group Specialized Register (31 August 2013), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2013, Issue 7 of 12) and reference lists of retrieved articles. We also contacted device manufacturers and other researchers in the field. No language restrictions were imposed. Selection criteria : Randomized controlled trials (RCTs) comparing deep brain or cortical stimulation to sham stimulation, resective surgery or further treatment with antiepileptic drugs. Data collection and analysis : Four review authors independently selected trials for inclusion. Two review authors independently extracted the relevant data and assessed trial quality and overall quality of evidence. The outcomes investigated were seizure freedom, responder rate, percentage seizure frequency reduction, adverse events, neuropsychological outcome and quality of life. If additional data were needed, the study investigators were contacted. Results were analysed and reported separately for different intracranial targets for reasons of clinical heterogeneity. Main results : Ten RCTs comparing one to three months of intracranial neurostimulation to sham stimulation were identified. One trial was on anterior thalamic DBS (n = 109; 109 treatment periods); two trials on centromedian thalamic DBS (n = 20; 40 treatment periods), but only one of the trials (n = 7; 14 treatment periods) reported sufficient information for inclusion in the quantitative meta-analysis; three trials on cerebellar stimulation (n = 22; 39 treatment periods); three trials on hippocampal DBS (n = 15; 21 treatment periods); and one trial on responsive ictal onset zone stimulation (n = 191; 191 treatment periods). Evidence of selective reporting was present in four trials and the possibility of a carryover effect complicating interpretation of the results could not be excluded in 4 cross-over trials without any washout period. Moderate-quality evidence could not demonstrate statistically or clinically significant changes in the proportion of patients who were seizure-free or experienced a 50% or greater reduction in seizure frequency (primary outcome measures) after 1 to 3 months of anterior thalamic DBS in (multi) focal epilepsy, responsive ictal onset zone stimulation in (multi) focal epilepsy patients and hippocampal DBS in (medial) temporal lobe epilepsy. However, a statistically significant reduction in seizure frequency was found for anterior thalamic DBS (-17.4% compared to sham stimulation; 95% confidence interval (CI) -32.1 to -1.0; high-quality evidence), responsive ictal onset zone stimulation (-24.9%; 95% CI -40.1 to 6.0; high-quality evidence)) and hippocampal DBS (-28.1%; 95% CI -34.1 to -22.2; moderate-quality evidence). Both anterior thalamic DBS and responsive ictal onset zone stimulation do not have a clinically meaningful impact on quality life after three months of stimulation (high-quality evidence). Electrode implantation resulted in asymptomatic intracranial haemorrhage in 3% to 4% of the patients included in the two largest trials and 5% to 13% had soft tissue infections; no patient reported permanent symptomatic sequelae. Anterior thalamic DBS was associated with fewer epilepsy-associated injuries (7.4 versus 25.5%; P = 0.01) but higher rates of self-reported depression (14.8 versus 1.8%; P = 0.02) and subjective memory impairment (13.8 versus 1.8%; P = 0.03); there were no significant differences in formal neuropsychological testing results between the groups. Responsive ictal-onset zone stimulation was well tolerated with few side effects but SUDEP rate should be closely monitored in the future (4 per 340 [= 11.8 per 1000] patient-years; literature: 2.2-10 per 1000 patient-years). The limited number of patients preclude firm statements on safety and tolerability of hippocampal DBS. With regards to centromedian thalamic DBS and cerebellar stimulation, no statistically significant effects could be demonstrated but evidence is of only low to very low quality. Authors' conclusions : Only short term RCTs on intracranial neurostimulation for epilepsy are available. Compared to sham stimulation, one to three months of anterior thalamic DBS ((multi) focal epilepsy), responsive ictal onset zone stimulation ((multi) focal epilepsy) and hippocampal DBS (temporal lobe epilepsy) moderately reduce seizure frequency in refractory epilepsy patients. Anterior thalamic DBS is associated with higher rates of self-reported depression and subjective memory impairment. SUDEP rates require careful monitoring in patients undergoing responsive ictal onset zone stimulation. There is insufficient evidence to make firm conclusive statements on the efficacy and safety of hippocampal DBS, centromedian thalamic DBS and cerebellar stimulation. There is a need for more, large and well-designed RCTs to validate and optimize the efficacy and safety of invasive intracranial neurostimulation treatments

    Neuromodulation, from the sideline to center stage

    Get PDF

    Neuromodulation, from the sideline to center stage

    Get PDF

    Neurostimulation of the Rat Motor System

    Get PDF
    Ce document fait la synthèse d'un ensemble de travaux concernant la nature de la plasticité neuronale et la manière dont la neurostimulation peut être utilisée pour améliorer la récupération motrice après une atteinte neurologique. Nous commençons par les principes fondamentaux généraux des neurosciences, la structure du système nerveux moteur chez l'homme et le rat, ainsi qu'une brève discussion sur les lésions neurologiques. Les sujets sont vastes et couverts avec la brièveté nécessaire, mais ils fournissent un contexte essentiel pour les chapitres suivants, présentés sous forme d'articles scientifiques. Dans le premier article, nous passons en revue le domaine de la neurostimulation sous ses aspects fondamental et clinique avec l'Accident Vasculaire Cerebral (AVC) en tant que maladie modèle pour les lésions neurologiques. Nous classifions les interventions de stimulation en trois modèles différents d'induction de la plasticité. Notre thèse centrale est qu'une meilleure compréhension des règles sous-jacentes de la plasticité, accompagnée de progrès dans une plus grande précision spatio-temporelle, est nécessaire pour faire avancer le domaine de la neurostimulation. Dans le deuxième article, nous décrivons, étape par étape, un nouveau protocole pour évaluer l'excitabilité corticospinale chez le rongeur éveillé pendant le comportement libre, ainsi que les plateformes matérielles et logicielles associées que notre équipe a développées à cette fin. L'une de ses principale caractéristique est la possibilité d'évaluer l'excitabilité corticomotrice en boucle fermée, en fonction de l'EMG, une nouvelle façon d'accroître l'uniformité des mesures sur des animaux en comportement. Cette plateforme de développement sera utile aux neuroscientifiques intéressés par l'évaluation de l'excitabilité du système nerveux chez les rongeurs éveillés par le biais d'une interrogation électrique ou optogénétique, un intermédiaire important avant les essais chez les primates non humains et éventuellement chez les humains. Dans le troisième article, nous avons utilisé cette plateforme prototype pour étudier la stimulation électrique associative appariée et le rôle de la plasticité dépendant de la synchronisation des potentiels d'action chez des rats implantés de façon chronique, sans l'influence de l'anesthésie. Nous nous sommes concentrés sur la variation systématique de l'intervalle entre la stimulation corticale et musculaire dans notre cohorte d'animaux afin de révéler l'effet de la synchronisation relative de l'activité aux niveaux cortical et spinal. Nous n'avons pas observé de potentialisation significative dans tous les intervalles de stimulation testés, mais plutôt des tendances vers des effets de type LTD dans la plupart des conditions de synchronisation. Nous discutons des raisons possibles pour lesquelles nous avons observé ces résultats. Dans le dernier article et dans le projet en cours, nous décrivons les premiers travaux prometteurs impliquant la neurostimulation optogénétique et électrique, ainsi que la réadaptation post-AVC comme tremplin pour des recherches futures. Nous concluons par une discussion générale et nous nous projetons dans l'avenir, tant à moyen qu'à long terme. La poursuite scientifique, tant sur le plan personnel que sur celui du domaine, se poursuivra, comme il se doit. Bien que ce travail soit conçu pour être lu dans un ordre séquentiel, chaque chapitre est indépendant. Collectivement, les travaux de cette thèse posent les bases et plaident en faveur d'une meilleure compréhension de la plasticité neuronale, du développement d'outils pour l'évaluer et de l'étude de ses applications pratiques pour parvenir à une meilleure récupération motrice après une lésion neurologique.This document synthesizes a body of work concerning the nature of neural plasticity and how neurostimulation may be used to improve motor recovery after neurological insult. We begin with general foundational principles in neuroscience, the structure of the nervous and motor systems in humans and rats, and a brief discussion of neurological injury. The topics are broad and covered with the necessary brevity, but provides critical context for the following chapters. In the first paper, we review the fields of neurostimulation across the clinical and basic science domains in the service of stroke as a model disease for neurological injury, framing the field in terms of three different models of plasticity induction. Our central thesis here is that enhanced understanding of the underlying rules of plasticity, accompanied with advances in greater spatiotemporal precision is necessary to move the field of neurostimulation forward. In the second paper we describe a stable, novel step-by-step protocol to assess corticospinal excitability in the awake, freely behaving rodent, and the associated hardware and software platforms that our team has developed for this purpose. A core feature enables corticomotor excitability assessment in a closed-loop, Electromyogram (EMG)-dependent manner, a novel way of increasing consistency during free behavior in untrained animals. This development platform will be of use to neuroscientists interested in assessing the excitability of the nervous system in awake, unrestrained rodents via electrical or optogenetic interrogation, an important intermediary before trials in non-human primates and eventually humans. In the third paper, we used this prototype platform to investigate electrical paired associative stimulation and the role of spike-timing-dependent plasticity in chronically implanted rats, without the influence of anaesthesia. Our focus was on systematically varying the Inter-Stimulus Interval (ISI) between cortical and muscle stimulation in our animal cohort in order to reveal the effect of relative activity timing at both the cortical and spinal levels. We did not observe significant potentiation across all of the stimulus intervals we tested, but instead observed trends towards Long-Term Depression (LTD)-like effects in the short term across most timing conditions. We discuss possible reasons why we observed these results. In the final paper and project currently in progress, we describe early promising work involving optogenetic and electrical neurostimulation, and stroke recovery as a launchpad for future investigations. We conclude with a general discussion and peer into the future, both in the medium term and the long term. The scientific pursuit, both personally and as a field will continue, as it should. Although this work is designed to be read in sequential order, each chapter stands alone. Collectively, the work in this thesis lays the groundwork and argues for a greater understanding of neural plasticity, development of tools to assess it, and study of its practical applications to achieve enhanced motor recovery after neurological injury

    Neuromorphic hardware for somatosensory neuroprostheses

    Get PDF
    In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    Supraorbital transcutaneous neurostimulation has sedative effects in healthy subjects

    Get PDF
    Transcutaneous neurostimulation (TNS) at extracephalic sites is a well known treatment of pain. Thanks to recent technical progress, the Cefaly® device now also allows supraorbital TNS. During observational clinical studies, several patients reported decreased vigilance or even sleepiness during a session of supraorbital TNS. We decided therefore to explore in more detail the potential sedative effect of supraorbital TNS, using standardized psychophysical tests in healthy volunteers.Clinical TrialJournal Articleinfo:eu-repo/semantics/publishe

    Proceedings of the Conference on Progress in Electrically Active Implants - Tissue and Functional Regeneration (ELAINE 2020)

    Get PDF
    The conference on Progress in Electrically Active Implants - Tissue and Functional Regeneration (ELAINE 2020) focused on novel methods in the electric stimulation of bio-material compounds of living cells and implantable electric stimulation devices. ELAINE 2020 provided international scientists a virtual platform to discuss the latest achievements in the form of invited presentations, selected talks from abstract submissions, and virtual poster sessions. In addition, we particularly invited critical reviews and contributions with negative results or unsuccessful replications to foster the scientific discussion and explicitly encourage young scientists to contribute and submit their work

    Beyond Tissue replacement: The Emerging role of smart implants in healthcare

    Get PDF
    Smart implants are increasingly used to treat various diseases, track patient status, and restore tissue and organ function. These devices support internal organs, actively stimulate nerves, and monitor essential functions. With continuous monitoring or stimulation, patient observation quality and subsequent treatment can be improved. Additionally, using biodegradable and entirely excreted implant materials eliminates the need for surgical removal, providing a patient-friendly solution. In this review, we classify smart implants and discuss the latest prototypes, materials, and technologies employed in their creation. Our focus lies in exploring medical devices beyond replacing an organ or tissue and incorporating new functionality through sensors and electronic circuits. We also examine the advantages, opportunities, and challenges of creating implantable devices that preserve all critical functions. By presenting an in-depth overview of the current state-of-the-art smart implants, we shed light on persistent issues and limitations while discussing potential avenues for future advancements in materials used for these devices
    • …
    corecore