442 research outputs found

    On Interpretability of Deep Learning based Skin Lesion Classifiers using Concept Activation Vectors

    Full text link
    Deep learning based medical image classifiers have shown remarkable prowess in various application areas like ophthalmology, dermatology, pathology, and radiology. However, the acceptance of these Computer-Aided Diagnosis (CAD) systems in real clinical setups is severely limited primarily because their decision-making process remains largely obscure. This work aims at elucidating a deep learning based medical image classifier by verifying that the model learns and utilizes similar disease-related concepts as described and employed by dermatologists. We used a well-trained and high performing neural network developed by REasoning for COmplex Data (RECOD) Lab for classification of three skin tumours, i.e. Melanocytic Naevi, Melanoma and Seborrheic Keratosis and performed a detailed analysis on its latent space. Two well established and publicly available skin disease datasets, PH2 and derm7pt, are used for experimentation. Human understandable concepts are mapped to RECOD image classification model with the help of Concept Activation Vectors (CAVs), introducing a novel training and significance testing paradigm for CAVs. Our results on an independent evaluation set clearly shows that the classifier learns and encodes human understandable concepts in its latent representation. Additionally, TCAV scores (Testing with CAVs) suggest that the neural network indeed makes use of disease-related concepts in the correct way when making predictions. We anticipate that this work can not only increase confidence of medical practitioners on CAD but also serve as a stepping stone for further development of CAV-based neural network interpretation methods.Comment: Accepted for the IEEE International Joint Conference on Neural Networks (IJCNN) 202

    Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet

    Full text link
    Skin cancer, a major form of cancer, is a critical public health problem with 123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma cases worldwide each year. The leading cause of skin cancer is high exposure of skin cells to UV radiation, which can damage the DNA inside skin cells leading to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed visually employing clinical screening, a biopsy, dermoscopic analysis, and histopathological examination. It has been demonstrated that the dermoscopic analysis in the hands of inexperienced dermatologists may cause a reduction in diagnostic accuracy. Early detection and screening of skin cancer have the potential to reduce mortality and morbidity. Previous studies have shown Deep Learning ability to perform better than human experts in several visual recognition tasks. In this paper, we propose an efficient seven-way automated multi-class skin cancer classification system having performance comparable with expert dermatologists. We used a pretrained MobileNet model to train over HAM10000 dataset using transfer learning. The model classifies skin lesion image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36 percent and top3 accuracy of 95.34 percent. The weighted average of precision, recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The model has been deployed as a web application for public use at (https://saketchaturvedi.github.io). This fast, expansible method holds the potential for substantial clinical impact, including broadening the scope of primary care practice and augmenting clinical decision-making for dermatology specialists.Comment: This is a pre-copyedited version of a contribution published in Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R., Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The definitive authentication version is available online via https://doi.org/10.1007/978-981-15-3383-9_1

    Computer aided diagnosis system using dermatoscopical image

    Get PDF
    Computer Aided Diagnosis (CAD) systems for melanoma detection aim to mirror the expert dermatologist decision when watching a dermoscopic or clinical image. Computer Vision techniques, which can be based on expert knowledge or not, are used to characterize the lesion image. This information is delivered to a machine learning algorithm, which gives a diagnosis suggestion as an output. This research is included into this field, and addresses the objective of implementing a complete CAD system using ‘state of the art’ descriptors and dermoscopy images as input. Some of them are based on expert knowledge and others are typical in a wide variety of problems. Images are initially transformed into oRGB, a perceptual color space, looking for both enhancing the information that images provide and giving human perception to machine algorithms. Feature selection is also performed to find features that really contribute to discriminate between benign and malignant pigmented skin lesions (PSL). The problem of robust model fitting versus statistically significant system evaluation is critical when working with small datasets, which is indeed the case. This topic is not generally considered in works related to PSLs. Consequently, a method that optimizes the compromise between these two goals is proposed, giving non-overfitted models and statistically significant measures of performance. In this manner, different systems can be compared in a fairer way. A database which enjoys wide international acceptance among dermatologists is used for the experiments.Ingeniería de Sistemas Audiovisuale

    Computer-Aided Diagnosis for Melanoma using Ontology and Deep Learning Approaches

    Get PDF
    The emergence of deep-learning algorithms provides great potential to enhance the prediction performance of computer-aided supporting diagnosis systems. Recent research efforts indicated that well-trained algorithms could achieve the accuracy level of experienced senior clinicians in the Dermatology field. However, the lack of interpretability and transparency hinders the algorithms’ utility in real-life. Physicians and patients require a certain level of interpretability for them to accept and trust the results. Another limitation of AI algorithms is the lack of consideration of other information related to the disease diagnosis, for example some typical dermoscopic features and diagnostic guidelines. Clinical guidelines for skin disease diagnosis are designed based on dermoscopic features. However, a structured and standard representation of the relevant knowledge in the skin disease domain is lacking. To address the above challenges, this dissertation builds an ontology capable of formally representing the knowledge of dermoscopic features and develops an explainable deep learning model able to diagnose skin diseases and dermoscopic features. Additionally, large-scale, unlabeled datasets can learn from the trained model and automate the feature generation process. The computer vision aided feature extraction algorithms are combined with the deep learning model to improve the overall classification accuracy and save manual annotation efforts

    Computer aided diagnostic support system for skin cancer: A review of techniques and algorithms

    Full text link
    Image-based computer aided diagnosis systems have significant potential for screening and early detection of malignant melanoma. We review the state of the art in these systems and examine current practices, problems, and prospects of image acquisition, pre-processing, segmentation, feature extraction and selection, and classification of dermoscopic images. This paper reports statistics and results from the most important implementations reported to date. We compared the performance of several classifiers specifically developed for skin lesion diagnosis and discussed the corresponding findings. Whenever available, indication of various conditions that affect the technique's performance is reported. We suggest a framework for comparative assessment of skin cancer diagnostic models and review the results based on these models. The deficiencies in some of the existing studies are highlighted and suggestions for future research are provided. © 2013 Ammara Masood and Adel Ali Al-Jumaily
    • …
    corecore