437 research outputs found

    COMPUTER AIDED SYSTEM FOR BREAST CANCER DIAGNOSIS USING CURVELET TRANSFORM

    Get PDF
    Breast cancer is a leading cause of death among women worldwide. Early detection is the key for improving breast cancer prognosis. Digital mammography remains one of the most suitable tools for early detection of breast cancer. Hence, there are strong needs for the development of computer aided diagnosis (CAD) systems which have the capability to help radiologists in decision making. The main goal is to increase the diagnostic accuracy rate. In this thesis we developed a computer aided system for the diagnosis and detection of breast cancer using curvelet transform. Curvelet is a multiscale transform which possess directionality and anisotropy, and it breaks some inherent limitations of wavelet in representing edges in images. We started this study by developing a diagnosis system. Five feature extraction methods were developed with curvelet and wavelet coefficients to differentiate between different breast cancer classes. The results with curvelet and wavelet were compared. The experimental results show a high performance of the proposed methods and classification accuracy rate achieved 97.30%. The thesis then provides an automatic system for breast cancer detection. An automatic thresholding algorithm was used to separate the area composed of the breast and the pectoral muscle from the background of the image. Subsequently, a region growing algorithm was used to locate the pectoral muscle and suppress it from the breast. Then, the work concentrates on the segmentation of region of interest (ROI). Two methods are suggested to accomplish the segmentation stage: an adaptive thresholding method and a pattern matching method. Once the ROI has been identified, an automatic cropping is performed to extract it from the original mammogram. Subsequently, the suggested feature extraction methods were applied to the segmented ROIs. Finally, the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) classifiers were used to determine whether the region is abnormal or normal. At this level, the study focuses on two abnormality types (mammographic masses and architectural distortion). Experimental results show that the introduced methods have very high detection accuracies. The effectiveness of the proposed methods has been tested with Mammographic Image Analysis Society (MIAS) dataset. Throughout the thesis all proposed methods and algorithms have been applied with both curvelet and wavelet for comparison and statistical tests were also performed. The overall results show that curvelet transform performs better than wavelet and the difference is statistically significant

    Computer aided diagnosis system for breast cancer using deep learning.

    Get PDF
    The recent rise of big data technology surrounding the electronic systems and developed toolkits gave birth to new promises for Artificial Intelligence (AI). With the continuous use of data-centric systems and machines in our lives, such as social media, surveys, emails, reports, etc., there is no doubt that data has gained the center of attention by scientists and motivated them to provide more decision-making and operational support systems across multiple domains. With the recent breakthroughs in artificial intelligence, the use of machine learning and deep learning models have achieved remarkable advances in computer vision, ecommerce, cybersecurity, and healthcare. Particularly, numerous applications provided efficient solutions to assist radiologists and doctors for medical imaging analysis, which has remained the essence of the visual representation that is used to construct the final observation and diagnosis. Medical research in cancerology and oncology has been recently blended with the knowledge gained from computer engineering and data science experts. In this context, an automatic assistance or commonly known as Computer-aided Diagnosis (CAD) system has become a popular area of research and development in the last decades. As a result, the CAD systems have been developed using multidisciplinary knowledge and expertise and they have been used to analyze the patient information to assist clinicians and practitioners in their decision-making process. Treating and preventing cancer remains a crucial task that radiologists and oncologists face every day to detect and investigate abnormal tumors. Therefore, a CAD system could be developed to provide decision support for many applications in the cancer patient care processes, such as lesion detection, characterization, cancer staging, tumors assessment, recurrence, and prognosis prediction. Breast cancer has been considered one of the common types of cancers in females across the world. It was also considered the leading cause of mortality among women, and it has been increased drastically every year. Early detection and diagnosis of abnormalities in screened breasts has been acknowledged as the optimal solution to examine the risk of developing breast cancer and thus reduce the increasing mortality rate. Accordingly, this dissertation proposes a new state-of-the-art CAD system for breast cancer diagnosis that is based on deep learning technology and cutting-edge computer vision techniques. Mammography screening has been recognized as the most effective tool to early detect breast lesions for reducing the mortality rate. It helps reveal abnormalities in the breast such as Mass lesion, Architectural Distortion, Microcalcification. With the number of daily patients that were screened is continuously increasing, having a second reading tool or assistance system could leverage the process of breast cancer diagnosis. Mammograms could be obtained using different modalities such as X-ray scanner and Full-Field Digital mammography (FFDM) system. The quality of the mammograms, the characteristics of the breast (i.e., density, size) or/and the tumors (i.e., location, size, shape) could affect the final diagnosis. Therefore, radiologists could miss the lesions and consequently they could generate false detection and diagnosis. Therefore, this work was motivated to improve the reading of mammograms in order to increase the accuracy of the challenging tasks. The efforts presented in this work consists of new design and implementation of neural network models for a fully integrated CAD system dedicated to breast cancer diagnosis. The approach is designed to automatically detect and identify breast lesions from the entire mammograms at a first step using fusion models’ methodology. Then, the second step only focuses on the Mass lesions and thus the proposed system should segment the detected bounding boxes of the Mass lesions to mask their background. A new neural network architecture for mass segmentation was suggested that was integrated with a new data enhancement and augmentation technique. Finally, a third stage was conducted using a stacked ensemble of neural networks for classifying and diagnosing the pathology (i.e., malignant, or benign), the Breast Imaging Reporting and Data System (BI-RADS) assessment score (i.e., from 2 to 6), or/and the shape (i.e., round, oval, lobulated, irregular) of the segmented breast lesions. Another contribution was achieved by applying the first stage of the CAD system for a retrospective analysis and comparison of the model on Prior mammograms of a private dataset. The work was conducted by joining the learning of the detection and classification model with the image-to-image mapping between Prior and Current screening views. Each step presented in the CAD system was evaluated and tested on public and private datasets and consequently the results have been fairly compared with benchmark mammography datasets. The integrated framework for the CAD system was also tested for deployment and showcase. The performance of the CAD system for the detection and identification of breast masses reached an overall accuracy of 97%. The segmentation of breast masses was evaluated together with the previous stage and the approach achieved an overall performance of 92%. Finally, the classification and diagnosis step that defines the outcome of the CAD system reached an overall pathology classification accuracy of 96%, a BIRADS categorization accuracy of 93%, and a shape classification accuracy of 90%. Results given in this dissertation indicate that our suggested integrated framework might surpass the current deep learning approaches by using all the proposed automated steps. Limitations of the proposed work could occur on the long training time of the different methods which is due to the high computation of the developed neural networks that have a huge number of the trainable parameters. Future works can include new orientations of the methodologies by combining different mammography datasets and improving the long training of deep learning models. Moreover, motivations could upgrade the CAD system by using annotated datasets to integrate more breast cancer lesions such as Calcification and Architectural distortion. The proposed framework was first developed to help detect and identify suspicious breast lesions in X-ray mammograms. Next, the work focused only on Mass lesions and segment the detected ROIs to remove the tumor’s background and highlight the contours, the texture, and the shape of the lesions. Finally, the diagnostic decision was predicted to classify the pathology of the lesions and investigate other characteristics such as the tumors’ grading assessment and type of the shape. The dissertation presented a CAD system to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD method incorporates the advances of image processing, deep learning, and image-to-image translation for a biomedical application

    Contralateral asymmetry for breast cancer detection : A CADx approach

    Get PDF
    Early detection is fundamental for the effective treatment of breast cancer and the screening mammography is the most common tool used by the medical community to detect early breast cancer development. Screening mammograms include images of both breasts using two standard views, and the contralateral asymmetry per view is a key feature in detecting breast cancer. we propose a methodology to incorporate said asymmetry information into a computer-aided diagnosis system that can accurately discern between healthy subjects and subjects at risk of having breast cancer. Furthermore, we generate features that measure not only a view-wise asymmetry, but a subject-wise one. Briefly, the methodology co-registers the left and right mammograms, extracts image characteristics, fuses them into subjectwise features, and classifies subjects. In this study, 152 subjects from two independent databases, one with analog- and one with digital mammograms, were used to validate the methodology. Areas under the receiver operating characteristic curve of 0.738 and 0.767, and diagnostic odds ratios of 23.10 and 9.00 were achieved, respectively. In addition, the proposed method has the potential to rank subjects by their probability of having breas

    Can high-frequency ultrasound predict metastatic lymph nodes in patients with invasive breast cancer?

    Get PDF
    Aim To determine whether high-frequency ultrasound can predict the presence of metastatic axillary lymph nodes, with a high specificity and positive predictive value, in patients with invasive breast cancer. The clinical aim is to identify patients with axillary disease requiring surgery who would not normally, on clinical grounds, have an axillary dissection, so potentially improving outcome and survival rates. Materials and methods The ipsilateral and contralateral axillae of 42 consecutive patients with invasive breast cancer were scanned prior to treatment using a B-mode frequency of 13 MHz and a Power Doppler frequency of 7 MHz. The presence or absence of an echogenic centre for each lymph node detected was recorded, and measurements were also taken to determine the L/S ratio and the widest and narrowest part of the cortex. Power Doppler was also used to determine vascularity. The contralateral axilla was used as a control for each patient. Results In this study of patients with invasive breast cancer, ipsilateral lymph nodes with a cortical bulge ≥3 mm and/or at least two lymph nodes with absent echogenic centres indicated the presence of metastatic axillary lymph nodes (10 patients). The sensitivity and specificity were 52.6% and 100%, respectively, positive and negative predictive values were 100% and 71.9%, respectively, the P value was 0.001 and the Kappa score was 0.55.\ud Conclusion This would indicate that high-frequency ultrasound can be used to accurately predict metastatic lymph nodes in a proportion of patients with invasive breast cancer, which may alter patient management

    Incorporating Breast Asymmetry Studies into CADx Systems

    Get PDF
    Breast cancer is one of the global leading causes of death among women, and an early detection is of uttermost importance to reduce mortality rates. Screening mammograms, in which radiologists rely only on their eyesight, are one of the most used early detection methods. However, characteristics, such as the asymmetry between breasts, a feature that could be very difficult to visually quantize, is key to breast cancer detection. Due to the highly heterogeneous and deformable structure of the breast itself, incorporating asymmetry measurements into an automated detection system is still a challenge. In this study, we proposed the use of a bilateral registration algorithm as an effective way to automatically measure mirror asymmetry. Furthermore, this information was fed to a machine learning algorithm to improve the accuracy of the model. In this study, 449 subjects (197 with calcifications, 207 with masses, and 45 healthy subjects) from a public database were used to train and evaluate the proposed methodology. Using this procedure, we were able to independently identify subjects with calcifications (accuracy = 0.825, AUC = 0.882) and masses (accuracy = 0.698, AUC = 0.807) from healthy subjects
    corecore