135,872 research outputs found

    Efficiency metrics computing in combined sensor networks

    Get PDF
    This paper discusses the computer-aided design of combined networks for offices and building automation systems based on diverse wired and wireless standards. The design requirements for these networks are often contradictive and have to consider performance, energy and cost efficiency together. For usual office communication, quality of service is more important. In the wireless sensor networks, the energy efficiency is a critical requirement to ensure their long life, to reduce maintenance costs and to increase reliability. The network optimization problem has been solved under considering of overall-costs as objective and quality of service including throughput, delay, packet losses etc. with energy efficiency as required constraints. This can be achieved by a combination of different planning methods like placement of wired and wireless nodes, tracing of cabling systems, energy-efficient sensor management and event-based sampling. A successful application of these methods requires a combined harmonized design at different levels of the networks. This paper aims to demonstrate how these methods are realized in the network planning. These tools provide optimized wired and wireless topologies under considering of costs, distances, transmitted power, frequencies, propagation environments and obstacles given in computer-aided design compatible formats

    Alternative communication network designs for an operational Plato 4 CAI system

    Get PDF
    The cost of alternative communications networks for the dissemination of PLATO IV computer-aided instruction (CAI) was studied. Four communication techniques are compared: leased telephone lines, satellite communication, UHF TV, and low-power microwave radio. For each network design, costs per student contact hour are computed. These costs are derived as functions of student population density, a parameter which can be calculated from census data for one potential market for CAI, the public primary and secondary schools. Calculating costs in this way allows one to determine which of the four communications alternatives can serve this market least expensively for any given area in the U.S. The analysis indicates that radio distribution techniques are cost optimum over a wide range of conditions

    Logic Programming approaches for routing fault-free and maximally-parallel Wavelength Routed Optical Networks on Chip (Application paper)

    Get PDF
    One promising trend in digital system integration consists of boosting on-chip communication performance by means of silicon photonics, thus materializing the so-called Optical Networks-on-Chip (ONoCs). Among them, wavelength routing can be used to route a signal to destination by univocally associating a routing path to the wavelength of the optical carrier. Such wavelengths should be chosen so to minimize interferences among optical channels and to avoid routing faults. As a result, physical parameter selection of such networks requires the solution of complex constrained optimization problems. In previous work, published in the proceedings of the International Conference on Computer-Aided Design, we proposed and solved the problem of computing the maximum parallelism obtainable in the communication between any two endpoints while avoiding misrouting of optical signals. The underlying technology, only quickly mentioned in that paper, is Answer Set Programming (ASP). In this work, we detail the ASP approach we used to solve such problem. Another important design issue is to select the wavelengths of optical carriers such that they are spread across the available spectrum, in order to reduce the likelihood that, due to imperfections in the manufacturing process, unintended routing faults arise. We show how to address such problem in Constraint Logic Programming on Finite Domains (CLP(FD)). This paper is under consideration for possible publication on Theory and Practice of Logic Programming.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 pages, LaTeX, 5 figure

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Throughput Bound of XOR Coded Wireless Multicasting to Three Clients

    Full text link
    It is a well-known result that constructing codewords over GF(2)GF(2) to minimize the number of transmissions for a single-hop wireless multicasting is an NP-complete problem. Linearly independent codewords can be constructed in polynomial time for all the nn clients, known as maximum distance separable (MDS) code, when the finite field size qq is larger than or equal to the number of clients, qnq\geq n. In this paper we quantify the exact minimum number of transmissions for a multicast network using erasure code when q=2q=2 and n=3n=3, such that q<nq<n. We first show that the use of Markov chain model to derive the minimum number of transmissions for such a network is limited for very small number of input packets. We then use combinatorial approach to derive an upper bound on the exact minimum number of transmissions. Our results show that the difference between the expected number of transmissions using XOR coding and MDS coding is negligible for n=3n=3.Comment: This paper appears in the proceedings of 20th IEEE International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD), 7-9 September 2015, University of Surrey, Guildford, U

    Global communication part 1: the use of apparel CAD technology

    Get PDF
    Trends needed for improved communication systems, through the development of future computer-aided design technology (CAD) applications, is a theme that has received attention due to its perceived benefits in improving global supply chain efficiencies. This article discusses the developments of both 2D and 3D computer-aided design capabilities, found within global fashion supply chain relationships and environments. Major characteristics identified within the data suggest that CAD/CAM technology appears to be improving; however, evidence also suggest a plateau effect, which is accrediting forced profits towards information technology manufactures, and arguably compromising the industry's competitive advantage. Nevertheless, 2D CAD increases communication speed; whereas 3D human interaction technology is seen to be evolving slowly and questionably with limited success. The article discusses the findings and also presents the issues regarding human interaction; technology education; and individual communication enhancements using technology processes. These are still prevalent topics for the future developments of global strategy and cultural communication amalgamation

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore