162,635 research outputs found

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    The Journal of Computer-Aided Molecular Design: a bibliometric note

    Get PDF
    Summarizes the articles in, and the citations to, volumes 2-24 of the Journal of Computer-Aided Molecular Design. The citations to the journal come from almost 2000 different sources that span a very wide range of academic subjects, with the most heavily cited articles being descriptions of software systems and of computational methods

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made

    Prediction of problems in injection moulded plastic products with computer aided mould design software : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Technology in Manufacturing and Industrial Technology at Massey University

    Get PDF
    Several new technologies to assist plastic injection moulding companies have been developed in the last twenty years. A number of computer software programs are now available which could revolutionise mould design. The most exciting aspect of the Computer Aided Mould Design (CAMD) software is the effect it has on reducing the lead time required to produce a working mould from a product concept. The application of the new technology for designing moulds, however, has been slow in New Zealand. One of the main reasons for the slow progress is the perceived value of the software or consulting services. Many injection moulding companies who design and manufacture moulds do not realise the great potential of CAMD software to save many hours of mould changes and volume of polymer material, even when the program is used after the mould has been made. However, the true benefits are only seen when the mould is designed using CAMD before the mould has been manufactured. Moulds manufactured correctly the first time save a great deal of time, energy and money. The value of the software is not completely understood by injection moulding manufacturers. They perceive the immediate benefits, however, the ongoing benefits are not recognised. A project was carried out to demonstrate the potential of CAMD software in determining moulding problems in existing injection moulded products. Four products, two of which were supplied by an injection moulding company, that had moulding problems, were simulated using Moldflow, a CAMD software package. The results of the simulation were compared with the actual moulding problems. It was found that the Moldflow simulation results described the problems occurring in the moulds accurately. Moulding problems included warpage, air traps and weld lines in poor positions and flow marks. Warpage is a major problem in injection moulded products. Even simple products can warp if not designed correctly. The only problems Moldflow did not identify, and does not claim to, were the flow marks caused by jetting and splashing of plastic as it entered the cavity. The designer must be aware of the problems caused by jetting and design gates to avoid it. Moldflow, and other CAMD software, are beneficial tools for the mould designer. The advantages of CAMD include short mould development time, shorter lead times from concept to production, reduction in the amount of material used, fewer changes to machine settings and predictable, repeatable quality. These benefits are not only savings in the mould design and manufacture, they also continue on into the processing of the product since less material is used in the product and machine down time caused by moulding problems is greatly reduced

    Influence of solvent choice on the optimisation of a reaction–separation operation : application to a Beckmann rearrangement reaction

    Get PDF
    In pharmaceutical syntheses, the solvent choice generally represents a complex design step. Traditionally, this choice is operated according to criteria connected with the reaction step and without any consideration on the following separation steps. The purpose of this study is to highlight the benefits of a global approach of optimisation for the solvent determination. In this way, an optimisation framework dedicated to global synthesis is applied to a simple reaction–separation operation integrating a Beckmann rearrangement reaction, leading to interesting solvent choices

    Optimisation of solvent replacement procedures according to economic and environmental criteria in pharmaceutical industry

    Get PDF
    During pharmaceutical syntheses, the reaction solvent has often to be switched off from one reaction step to the following one. Because of the standard industrial practices, solvent replacement generally constitutes a slow and high solvent-consuming operation. In this paper, a specific methodology, based on a batch processes optimisation framework, is proposed for the optimisation of solvent replacement procedures. Optimisation may be performed at different levels according to economic and environmental criteria and satisfying safety and waste treatment constraints. In fact, the proposed methodology allows both to design new procedures of solvent replacement and to improve existing industrial processes. Two industrial applications are detailed to emphasize the benefits related to this methodology. In each case, the proposed methodology leads to the suitable recipe from comparison of traditional and empirical replacement procedures generally used in the pharmaceutical industry

    A bibliometric analysis of the Journal of Molecular Graphics and Modelling

    Get PDF
    This paper reviews the articles published in Volumes 2-24 of the Journal of Molecular Graphics and Modelling (formerly the Journal of Molecular Graphics), focusing on the changes that have occurred in the subject over the years, and on the most productive and most cited authors and institutions. The most cited papers are those describing systems or algorithms, but the proportion of these types of article is decreasing as more applications of molecular graphics and molecular modelling are reported
    • …
    corecore