545 research outputs found

    Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions

    Get PDF
    Computer-aided diagnosis offers a promising solution to reduce variation in colonoscopy performance. Pooled miss rates for polyps are as high as 22%, and associated interval colorectal cancers after colonoscopy are of concern. Optical biopsy, whereby in-vivo classification of polyps based on enhanced imaging replaces histopathology, has not been incorporated into routine practice because it is limited by interobserver variability and generally only meets accepted standards in expert settings. Real-time decision-support software has been developed to detect and characterise polyps, and also to offer feedback on the technical quality of inspection. Some of the current algorithms, particularly with recent advances in artificial intelligence techniques, match human expert performance for optical biopsy. In this Review, we summarise the evidence for clinical applications of computer-aided diagnosis and artificial intelligence in colonoscopy

    Quality Assurance of Computer-Aided Detection and Diagnosis in Colonoscopy

    Get PDF
    Recent breakthroughs in artificial intelligence (AI), specifically via its emerging sub-field “Deep Learning,” have direct implications for computer-aided detection and diagnosis (CADe/CADx) for colonoscopy. AI is expected to have at least 2 major roles in colonoscopy practice; polyp detection (CADe) and polyp characterization (CADx). CADe has the potential to decrease polyp miss rate, contributing to improving adenoma detection, whereas CADx can improve the accuracy of colorectal polyp optical diagnosis, leading to reduction of unnecessary polypectomy of non-neoplastic lesions, potential implementation of a resect and discard paradigm, and proper application of advanced resection techniques. A growing number of medical-engineering researchers are developing both, CADe and CADx systems, some of which allow real-time recognition of polyps or in vivo identification of adenomas with over 90% accuracy. However, the quality of the developed AI systems as well as that of the study designs vary significantly, hence raising some concerns regarding the generalization of the proposed AI systems. Initial studies were conducted in an exploratory or retrospective fashion using stored images and likely overestimating the results. These drawbacks potentially hinder smooth implementation of this novel technology into colonoscopy practice. The aim of this article is to review both contributions and limitations in recent machine learning based CADe/CADx colonoscopy studies and propose some principles that should underlie system development and clinical testing

    Artificial intelligence and automation in endoscopy and surgery

    Get PDF
    Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient’s anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery

    GastroVision: A Multi-class Endoscopy Image Dataset for Computer Aided Gastrointestinal Disease Detection

    Full text link
    Integrating real-time artificial intelligence (AI) systems in clinical practices faces challenges such as scalability and acceptance. These challenges include data availability, biased outcomes, data quality, lack of transparency, and underperformance on unseen datasets from different distributions. The scarcity of large-scale, precisely labeled, and diverse datasets are the major challenge for clinical integration. This scarcity is also due to the legal restrictions and extensive manual efforts required for accurate annotations from clinicians. To address these challenges, we present \textit{GastroVision}, a multi-center open-access gastrointestinal (GI) endoscopy dataset that includes different anatomical landmarks, pathological abnormalities, polyp removal cases and normal findings (a total of 27 classes) from the GI tract. The dataset comprises 8,000 images acquired from B{\ae}rum Hospital in Norway and Karolinska University Hospital in Sweden and was annotated and verified by experienced GI endoscopists. Furthermore, we validate the significance of our dataset with extensive benchmarking based on the popular deep learning based baseline models. We believe our dataset can facilitate the development of AI-based algorithms for GI disease detection and classification. Our dataset is available at \url{https://osf.io/84e7f/}

    Colonoscopy polyp detection and classification: Dataset creation and comparative evaluations

    Get PDF
    Colorectal cancer (CRC) is one of the most common types of cancer with a high mortality rate. Colonoscopy is the preferred procedure for CRC screening and has proven to be effective in reducing CRC mortality. Thus, a reliable computer-aided polyp detection and classification system can significantly increase the effectiveness of colonoscopy. In this paper, we create an endoscopic dataset collected from various sources and annotate the ground truth of polyp location and classification results with the help of experienced gastroenterologists. The dataset can serve as a benchmark platform to train and evaluate the machine learning models for polyp classification. We have also compared the performance of eight state-of-the-art deep learning-based object detection models. The results demonstrate that deep CNN models are promising in CRC screening. This work can serve as a baseline for future research in polyp detection and classification

    Spatio-temporal classification for polyp diagnosis

    Get PDF
    Colonoscopy remains the gold standard investigation for colorectal cancer screening as it offers the opportunity to both detect and resect pre-cancerous polyps. Computer-aided polyp characterisation can determine which polyps need polypectomy and recent deep learning-based approaches have shown promising results as clinical decision support tools. Yet polyp appearance during a procedure can vary, making automatic predictions unstable. In this paper, we investigate the use of spatio-temporal information to improve the performance of lesions classification as adenoma or non-adenoma. Two methods are implemented showing an increase in performance and robustness during extensive experiments both on internal and openly available benchmark datasets
    • …
    corecore