400 research outputs found

    Sampled-data modelling and simulation of cyclically switched converters

    Get PDF

    RAPPID: an asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper describes an investigation of potential advantages and risks of applying an aggressive asynchronous design methodology to Intel Architecture. RAPPID ("Revolving Asynchronous PentiumÂź Processor Instruction Decoder"), a prototype IA32 instruction length decoding and steering unit, was implemented using self-timed techniques. RAPPID chip was fabricated on a 0.25m CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions/nS-with manageable risks using this design technology. RAPPID achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as an existing 400MHz clocked circuit

    RAPPID: an asynchronous instruction length decoder

    Get PDF
    Journal ArticleThis paper describes an investigation of potential advantages and risks of applying an aggressive asynchronous design methodology to Intel Architecture. RAPPID ("Revolving Asynchronous PentiumÂź Processor Instruction Decoder"), a prototype IA32 instruction length decoding and steering unit, was implemented using self-timed techniques. RAPPID chip was fabricated on a 0.25m CMOS process and tested successfully. Results show significant advantages-in particular, performance of 2.5-4.5 instructions/nS-with manageable risks using this design technology. RAPPID achieves three times the throughput and half the latency, dissipating only half the power and requiring about the same area as an existing 400MHz clocked circuit

    Timing Closure in Chip Design

    Get PDF
    Achieving timing closure is a major challenge to the physical design of a computer chip. Its task is to find a physical realization fulfilling the speed specifications. In this thesis, we propose new algorithms for the key tasks of performance optimization, namely repeater tree construction; circuit sizing; clock skew scheduling; threshold voltage optimization and plane assignment. Furthermore, a new program flow for timing closure is developed that integrates these algorithms with placement and clocktree construction. For repeater tree construction a new algorithm for computing topologies, which are later filled with repeaters, is presented. To this end, we propose a new delay model for topologies that not only accounts for the path lengths, as existing approaches do, but also for the number of bifurcations on a path, which introduce extra capacitance and thereby delay. In the extreme cases of pure power optimization and pure delay optimization the optimum topologies regarding our delay model are minimum Steiner trees and alphabetic code trees with the shortest possible path lengths. We presented a new, extremely fast algorithm that scales seamlessly between the two opposite objectives. For special cases, we prove the optimality of our algorithm. The efficiency and effectiveness in practice is demonstrated by comprehensive experimental results. The task of circuit sizing is to assign millions of small elementary logic circuits to elements from a discrete set of logically equivalent, predefined physical layouts such that power consumption is minimized and all signal paths are sufficiently fast. In this thesis we develop a fast heuristic approach for global circuit sizing, followed by a local search into a local optimum. Our algorithms use, in contrast to existing approaches, the available discrete layout choices and accurate delay models with slew propagation. The global approach iteratively assigns slew targets to all source pins of the chip and chooses a discrete layout of minimum size preserving the slew targets. In comprehensive experiments on real instances, we demonstrate that the worst path delay is within 7% of its lower bound on average after a few iterations. The subsequent local search reduces this gap to 2% on average. Combining global and local sizing we are able to size more than 5.7 million circuits within 3 hours. For the clock skew scheduling problem we develop the first algorithm with a strongly polynomial running time for the cycle time minimization in the presence of different cycle times and multi-cycle paths. In practice, an iterative local search method is much more efficient. We prove that this iterative method maximizes the worst slack, even when restricting the feasible schedule to certain time intervals. Furthermore, we enhance the iterative local approach to determine a lexicographically optimum slack distribution. The clock skew scheduling problem is then generalized to allow for simultaneous data path optimization. In fact, this is a time-cost tradeoff problem. We developed the first combinatorial algorithm for computing time-cost tradeoff curves in graphs that may contain cycles. Starting from the lowest-cost solution, the algorithm iteratively computes a descent direction by a minimum cost flow computation. The maximum feasible step length is then determined by a minimum ratio cycle computation. This approach can be used in chip design for several optimization tasks, e.g. threshold voltage optimization or plane assignment. Finally, the optimization routines are combined into a timing closure flow. Here, the global placement is alternated with global performance optimization. Netweights are used to penalize the length of critical nets during placement. After the global phase, the performance is improved further by applying more comprehensive optimization routines on the most critical paths. In the end, the clock schedule is optimized and clocktrees are inserted. Computational results of the design flow are obtained on real-world computer chips

    Formale Verifikationsmethodiken fĂŒr nichtlineare analoge Schaltungen

    Get PDF
    The objective of this thesis is to develop new methodologies for formal verification of nonlinear analog circuits. Therefore, new approaches to discrete modeling of analog circuits, specification of analog circuit properties and formal verification algorithms are introduced. Formal approaches to verification of analog circuits are not yet introduced into industrial design flows and still subject to research. Formal verification proves specification conformance for all possible input conditions and all possible internal states of a circuit. Automatically proving that a model of the circuit satisfies a declarative machine-readable property specification is referred to as model checking. Equivalence checking proves the equivalence of two circuit implementations. Starting from the state of the art in modeling analog circuits for simulation-based verification, discrete modeling of analog circuits for state space-based formal verification methodologies is motivated in this thesis. In order to improve the discrete modeling of analog circuits, a new trajectory-directed partitioning algorithm was developed in the scope of this thesis. This new approach determines the partitioning of the state space parallel or orthogonal to the trajectories of the state space dynamics. Therewith, a high accuracy of the successor relation is achieved in combination with a lower number of states necessary for a discrete model of equal accuracy compared to the state-of-the-art hyperbox-approach. The mapping of the partitioning to a discrete analog transition structure (DATS) enables the application of formal verification algorithms. By analyzing digital specification concepts and the existing approaches to analog property specification, the requirements for a new specification language for analog properties have been discussed in this thesis. On the one hand, it shall meet the requirements for formal specification of verification approaches applied to DATS models. On the other hand, the language syntax shall be oriented on natural language phrases. By synthesis of these requirements, the analog specification language (ASL) was developed in the scope of this thesis. The verification algorithms for model checking, that were developed in combination with ASL for application to DATS models generated with the new trajectory-directed approach, offer a significant enhancement compared to the state of the art. In order to prepare a transition of signal-based to state space-based verification methodologies, an approach to transfer transient simulation results from non-formal test bench simulation flows into a partial state space representation in form of a DATS has been developed in the scope of this thesis. As has been demonstrated by examples, the same ASL specification that was developed for formal model checking on complete discrete models could be evaluated without modifications on transient simulation waveforms. An approach to counterexample generation for the formal ASL model checking methodology offers to generate transition sequences from a defined starting state to a specification-violating state for inspection in transient simulation environments. Based on this counterexample generation, a new formal verification methodology using complete state space-covering input stimuli was developed. By conducting a transient simulation with these complete state space-covering input stimuli, the circuit adopts every state and transition that were visited during stimulus generation. An alternative formal verification methodology is given by retransferring the transient simulation responses to a DATS model and by applying the ASL verification algorithms in combination with an ASL property specification. Moreover, the complete state space-covering input stimuli can be applied to develop a formal equivalence checking methodology. Therewith, the equivalence of two implementations can be proven for every inner state of both systems by comparing the transient simulation responses to the complete-coverage stimuli of both circuits. In order to visually inspect the results of the newly introduced verification methodologies, an approach to dynamic state space visualization using multi-parallel particle simulation was developed. Due to the particles being randomly distributed over the complete state space and moving corresponding to the state space dynamics, another perspective to the system's behavior is provided that covers the state space and hence offers formal results. The prototypic implementations of the formal verification methodologies developed in the scope of this thesis have been applied to several example circuits. The acquired results for the new approaches to discrete modeling, specification and verification algorithms all demonstrate the capability of the new verification methodologies to be applied to complex circuit blocks and their properties.Gegenstand dieser Dissertation ist die Entwicklung neuer Methodiken zur formalen Verifikation nichtlinearer analoger elektronischer Schaltungen. Dazu werden im Rahmen dieser Arbeit entstandene neue AnsĂ€tze in den Bereichen verifikationsgerechte diskrete Modellierung analoger Schaltungen, Spezifikation analoger Schaltungseigenschaften und formale Verifikationsalgorithmen vorgestellt. Ausgehend vom Stand der Technik der Modellierung analoger Schaltungen fĂŒr die simulationsbasierte Verifikation wird im Rahmen dieser Arbeit die diskrete Modellierung analoger Schaltungen fĂŒr zustandsraumbasierte formale Verifikationsverfahren betrachtet. Dazu wurde ein neuer Ansatz zur diskreten Modellierung entwickelt, der die Aufteilungsstruktur anhand der Trajektorien der Vektorfelddynamik bestimmt. So wird eine hohe Genauigkeit der Nachfolgerrelation ermöglicht, woraus eine niedrigere Zahl an ZustĂ€nden fĂŒr ein diskretes Modell gleicher Genauigkeit im Vergleich mit dem bisherigen Stand der Technik folgt. Die Abbildung der Trajektorien-gesteuerten Partitionierung auf eine diskrete analoge Transitionsstruktur (DATS) erlaubt die Anwendung von formalen Verifikationsalgorithmen. Die formale Spezifikation von Eigenschaften in ersten AnsĂ€tzen zum Model Checking analoger Schaltungen hat sich stark an den bestehenden temporallogischen Verfahren aus dem Bereich digitaler Hardware orientiert. Ausgehend von einer Analyse digitaler Spezifikationskonzepte und der bestehenden AnsĂ€tze fĂŒr analoge Eigenschaften wurden Anforderungen an eine neue Spezifikationssprache in dieser Arbeit abgeleitet. Die aus diesen Anforderungen im Rahmen dieser Arbeit entwickelte analoge Spezifikationssprache "Analog Specification Language" (ASL) basiert auf einer natĂŒrlichsprachlichen Kapselung temporallogischer Operationen, die mit erweiterten Algorithmen zur Transitionspfadbestimmung, DurchfĂŒhrung von Berechnungen auf Zustandsparametern und Oszillationsbestimmung eine hohe AusdrucksstĂ€rke analoger Eigenschaften mit einer anwenderfreundlichen Syntax kombinieren konnte. Die zusammen mit ASL entwickelten Model Checking-Verifikationsalgorithmen zur Auswertung von ASL-Spezifikationen auf einem mit dem Trajektorien-gesteuerten Diskretisierungsverfahren erzeugten DATS-Modell bilden eine wesentliche Erweiterung zum Stand der Technik. Um einen Übergang der Verifikation von signalbasierten zu zustandsraumbasierten Methodiken zu ermöglichen, wurde im Rahmen dieser Arbeit ein Ansatz entwickelt, der die Übertragung von transienten Simulationsergebnissen aus nicht-formalen Testbench-Simulationsumgebungen in eine partielle DATS-Zustandsraumdarstellung ermöglicht. Damit kann, wie anhand von Beispielen gezeigt werden konnte, die gleiche ASL-Spezifikation fĂŒr Eigenschaften eines vollstĂ€ndigen diskreten Modells ohne Modifikation auch auf Simulationsergebnissen ausgewertet werden. Ein fĂŒr das formale ASL-basierte Model Checking entwickelter Ansatz zur Erzeugung von Gegenbeispielen fĂŒr als spezifikationsverletzend identifizierte Zustandsraumgebiete erlaubt es, Transitionsfolgen von einem definierten Startzustand zu einem spezifikationsverletzenden Zustand zu ermitteln. Auf Basis dieses Gegenbeispiel-Verfahrens wurde eine neue formale Eigenschaftsverifikationsmethodik mittels vollstĂ€ndig den Zustandsraum einer Schaltung abdeckenden Eingangsstimuli entwickelt. Die vollstĂ€ndig den Zustandsraum abdeckenden Eingangsstimuli bieten noch eine weitere Anwendungsmöglichkeit im Bereich des Äquivalenzvergleichs. Die im Rahmen dieser Arbeit entwickelte Methodik zum formalen Äquivalenzvergleich auf Basis der vollstĂ€ndig den Zustandsraum abdeckenden Eingangsstimuli ersetzt die anwenderdefinierten Eingangsstimuli durch die vollstĂ€ndig den Zustandsraum abdeckenden. So kann die Äquivalenz fĂŒr jeden möglichen Zustand der zu vergleichenden Implementierungen anhand eines automatisierten Vergleichs der Simulationsergebnisse beider Implementierungen gezeigt werden. Um die Ergebnisse der neu eingefĂŒhrten formalen Verifikationsmethodiken visuell zu untersuchen wurde ein Verfahren entwickelt, das den Zustandsraum und seine Dynamik mittels eines Partikel-Simulationsansatzes visualisiert. Da die Partikel ĂŒber den gesamten Zustandsraum randomisiert verteilt werden und sich dann gemĂ€ĂŸ der Vektorfelddynamik fortbewegen, kann auch hier ein Einblick in das Systemverhalten gewonnen werden, der eine weitestgehend vollstĂ€ndige und somit formale ReprĂ€sentation des Zustandsraums bietet. Die prototypische Implementierung der im Rahmen dieser Arbeit entwickelten formalen Verifikationsmethodiken wurde auf zahlreiche Beispielschaltungen angewendet. Die Ergebnisse fĂŒr die neuen AnsĂ€tze zur diskreten Modellierung, zur Spezifikation und zu Verifikationsalgorithmen analoger Schaltungen zeigen, dass die aus diesen AnsĂ€tzen erzeugten Verifikationsmethodiken erfolgreich auf komplexe Zustandsraumstrukturen angewendet werden können

    MATLAB

    Get PDF
    This excellent book represents the final part of three-volumes regarding MATLAB-based applications in almost every branch of science. The book consists of 19 excellent, insightful articles and the readers will find the results very useful to their work. In particular, the book consists of three parts, the first one is devoted to mathematical methods in the applied sciences by using MATLAB, the second is devoted to MATLAB applications of general interest and the third one discusses MATLAB for educational purposes. This collection of high quality articles, refers to a large range of professional fields and can be used for science as well as for various educational purposes

    Automated synthesis of delay-insensitive circuits

    Get PDF

    The Telecommunications and Data Acquisition Report

    Get PDF
    This publication, one of a series formerly titled The Deep Space Network (DSN) Progress Report, documents DSN progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. In addition, developments in Earth-based radio technology as applied to geodynamics, astrophysics, and the radio search for extraterrestrial intelligence are reported
    • 

    corecore