212 research outputs found

    Modelling the Risks Remotely Piloted Aircraft Pose to People on the Ground

    Get PDF
    Worldwide there is much e ort being directed towards the development of a framework of air- worthiness regulations for remotely piloted aircraft systems (RPAS). It is now broadly accepted that regulations should have a strong foundation in, and traceability to, the management of the safety risks. Existing risk models for RPAS operations do not provide a simple means for incorporating the wide range of technical and operational controls into the risk analysis and evaluation processes. This paper describes a new approach for modelling and evaluating the risks associated with RPAS operations near populous areas based on the barrier bow tie (BBT) model. A BBT model is used to structure the underlying risk management problem. The model focuses risk analysis, evaluation, and decision making activities on the devices, people, and processes that can be employed to reduce risk. The BBT model and a comprehensive set of example risk controls are presented. The general model can be applied to any RPAS operation. The foundations for quantitative and qualitative assessments using a BBT model are also presented. The modelling and evaluation framework is illustrated through its application to a case-study rotary wing RPAS for two operational scenarios. The model can be used as a basis for determining airworthiness certification requirements for RPAS

    ESTABLISHING NEW FOUNDATIONS FOR THE USE OF REMOTELY-PILOTED AIRCRAFT SYSTEMS FOR CIVILIAN APPLICATIONS

    Get PDF
    Abstract. Skyopener is a project funded by the EU through the European GNSS Agency (GSA) in the framework of the Horizon 2020 program. Skyopener's goal is contributing to the roadmap for the integration of civil Remotely Piloted Aircraft Systems (RPAS) into nonsegregated airspace, by providing and testing enabling technologies, in particular with reference to European initiative U-Space, aimed at establishing regulations and infrastructure for integration of unmanned aviation into shared airspace. The main outcomes of the project include: implementing and testing a reliable and secure redundant air-ground communication link, based on satellite and 3G/4G networks; integrating the mission management system and ground station with a UTM (Unmanned aerial system Traffic Management) client, and experimenting UTM services being deployed by one of the partners; demonstrating technical and economic feasibility of long- range missions beyond visual line of sight (BVLOS) by executing corridor mapping on a high-voltage powerline, and airport area surveys (e-TOD: electronic-Terrain Obstacle Database).</p

    Development, analysis, and implications of open-source simulations of remotely piloted aircraft

    Get PDF
    In recent years, the use of Remotely Piloted Aircraft (RPAs) for diverse purposes has increased exponentially. As a consequence, the uncertainty created by situations turning into a threat for civilians has led to more restrictive regulations from national administrations such as Transport Canada. Their purpose is to safely integrate RPAs in the current airspace used for piloted aviation by evaluating Sense and Avoid (SAA) strategies and close encounters. The difficulty falls on having to rely on simulated environments because of the risk to the human pilot in the piloted aircraft. In the first part of this research, the technical difficulties associated with the development and study of RPA computer models are discussed. It explores the rationale behind using Open-Source Software (OSS) platforms for simulating RPAs as well as the challenges associated with interacting with OSS at graduate student level. A set of recommendations is proposed as the solution to improve the graduate student experience with OSS. In the second part, particular challenges related to the design of OSS computer models are addressed. Based on: (1) the differences and similarities between piloted and RPA flight simulators and (2) existing Verification and Validation (V&V) approaches, a validation method is presented as a solution to the subject of developing fixed-wing RPAs in OSS environments. This method is used to design two flight dynamics models with SAA applications. The first computer model is presented in tutorial format as a case study for the validation procedure whereas the second computer model is specific for testing SAA strategies. In the last part, one of the designed RPAs is integrated into a computer environment with a representative general aircraft. From the simulated encounters, a diving avoidance manoeuvre on the RPA is developed. This performance is observed to analyze the consequences to the airspace. The implications of this research are seen from three perspectives: (1) the OSS challenges in graduate school are wide-spread across disciplines, (2) the proposed validation procedure is adaptable to fit any computer model and simulation scenario, and (3) the simulated OSS framework with an RPA computer model has served for testing preliminary SAA methods with close encounters with manned aircraft

    Multi-sensor data fusion techniques for RPAS detect, track and avoid

    Get PDF
    Accurate and robust tracking of objects is of growing interest amongst the computer vision scientific community. The ability of a multi-sensor system to detect and track objects, and accurately predict their future trajectory is critical in the context of mission- and safety-critical applications. Remotely Piloted Aircraft System (RPAS) are currently not equipped to routinely access all classes of airspace since certified Detect-and-Avoid (DAA) systems are yet to be developed. Such capabilities can be achieved by incorporating both cooperative and non-cooperative DAA functions, as well as providing enhanced communications, navigation and surveillance (CNS) services. DAA is highly dependent on the performance of CNS systems for Detection, Tacking and avoiding (DTA) tasks and maneuvers. In order to perform an effective detection of objects, a number of high performance, reliable and accurate avionics sensors and systems are adopted including non-cooperative sensors (visual and thermal cameras, Laser radar (LIDAR) and acoustic sensors) and cooperative systems (Automatic Dependent Surveillance-Broadcast (ADS-B) and Traffic Collision Avoidance System (TCAS)). In this paper the sensors and system information candidates are fully exploited in a Multi-Sensor Data Fusion (MSDF) architecture. An Unscented Kalman Filter (UKF) and a more advanced Particle Filter (PF) are adopted to estimate the state vector of the objects based for maneuvering and non-maneuvering DTA tasks. Furthermore, an artificial neural network is conceptualised/adopted to exploit the use of statistical learning methods, which acts to combined information obtained from the UKF and PF. After describing the MSDF architecture, the key mathematical models for data fusion are presented. Conceptual studies are carried out on visual and thermal image fusion architectures

    UAS Pilots Code – Annotated Version 1.0

    Get PDF
    The UAS PILOTS CODE (UASPC) offers recommendations to advance flight safety, ground safety, airmanship, and professionalism.6 It presents a vision of excellence for UAS pilots and operators, and includes general guidance for all types of UAS. The UASPC offers broad guidance—a set of values—to help a pilot interpret and apply standards and regulations, and to confront real world challenges to avoid incidents and accidents. It is designed to help UAS pilots develop standard operating procedures (SOPs), effective risk management,7 safety management systems (SMS), and to encourage UAS pilots to consider themselves aviators and participants in the broader aviation community

    Study of operational requirements in hostile and congested areas with unmanned air vehicles (UAV/RPAS)

    Get PDF
    The target of this study is analyse the operational requirement of UAV/RPAS activities in special conditionsThis study analyses and determines the operational requirements for unmanned aerial vehicles and remotely piloted aircrafts when operating in congested and hostile areas. In order to do so, a study of present regulatory framework from different countries is done and proposals published by regulating authorities from Europe and America as well, concluding this initial approach to unmanned aerial vehicle’s regulations with a benchmark of best practices. Afterwards, a risk analysis and a safe study are done by identifying potential risks, taking into account all possible situations and scenarios that can be produced during an operation in a congested area. Once the risks are adequately identified, an evaluation of them is performed, obtaining as a result a safety level which is acceptable or unacceptable in order to ensure the integrity of people on ground, and consequently developing the operation or not. Finally, for those operations associated to a risk that result in an unacceptable safety level, mitigation measures are proposed to reduce the likelihood of hazard happening and the severity of the consequences. It may be noted that these mitigation measures consist in adding technology to unmanned aircraft systems and establishing operational procedures

    United States Air Force Applications of Unmanned Aerial Systems (UAS): A Delphi Study to Examine Current and Future UAS Autonomous Mission Capabilities

    Get PDF
    As UAS technology continues to grow and enable increased autonomous capabilities, acquisition and operational decision makers must determine paths to pursue for existing and emerging mission areas. The DoD has published a number of 25-year unmanned systems integration roadmaps (USIR) to describe future capabilities and challenges. However, these roadmaps have lacked distinguishable stakeholder perspectives. Following the USIRs concept, this research focused on UAS autonomy through the lens of UAS subject matter experts (SMEs). We used the Delphi method with SMEs from USAF communities performing day-to-day operations, acquisitions, and research in UAS domains to forecast mission capabilities over the next 20 years; specifically, within the context of increased UAS autonomous capabilities. Through two rounds of questions, the study provided insight to the capabilities SMEs viewed as most important and likely to be incorporated as well as how different stakeholders view the many challenges and opportunities autonomy present for future missions

    Challenges Caused by the Unmanned Aerial Vehicle in the Air Traffic Management

    Get PDF
    The increasing number of unmanned aerial vehicle poses new challenges in the aviation industry especially the air traffic control, which is responsible for the safe flight operations in the controlled airspaces. In order to protect the conventional aircraft a new operation environment has to be created, which guarantee the safe flying and the possibility of the fulfilment of the flight. In the article drone related safety and operational problems are highlighted. All issue connected to the coexistence of manned and unmanned aircrafts are critical, thus their management have significant importance. Spread and wide use of unmanned aerial vehicle traffic management systems (UTM) can manage the critical operational issues, but is has to be defined that what is the problem, what is the scope, what is the operational environment. Services and functions related to the operation of the UTM system are defined, which are necessary for the safe flying fulfilled by the unmanned vehicles

    Optimal Collision Avoidance Trajectories for Unmanned/Remotely Piloted Aircraft

    Get PDF
    The post-911 environment has punctuated the force-multiplying capabilities that Remotely Piloted Aircraft (RPA) provides combatant commanders at all echelons on the battlefield. Not only have unmanned aircraft systems made near-revolutionary impacts on the battlefield, their utility and proliferation in law enforcement, homeland security, humanitarian operations, and commercial applications have likewise increased at a rapid rate. As such, under the Federal Aviation Administration (FAA) Modernization and Reform Act of 2012, the United States Congress tasked the FAA to provide for the safe integration of civil unmanned aircraft systems into the national airspace system (NAS) as soon as practicable, but not later than September 30, 2015. However, a necessary entrance criterion to operate RPAs in the NAS is the ability to Sense and Avoid (SAA) both cooperative and noncooperative air traffic to attain a target level of safety as a traditional manned aircraft platform. The goal of this research effort is twofold: First, develop techniques for calculating optimal avoidance trajectories, and second, develop techniques for estimating an intruder aircraft\u27s trajectory in a stochastic environment. This dissertation describes the optimal control problem associated with SAA and uses a direct orthogonal collocation method to solve this problem and then analyzes these results for different collision avoidance scenarios
    • …
    corecore