4,154 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Vision-Based Monocular SLAM in Micro Aerial Vehicle

    Get PDF
    Micro Aerial Vehicles (MAVs) are popular for their efficiency, agility, and lightweights. They can navigate in dynamic environments that cannot be accessed by humans or traditional aircraft. These MAVs rely on GPS and it will be difficult for GPS-denied areas where it is obstructed by buildings and other obstacles.  Simultaneous Localization and Mapping (SLAM) in an unknown environment can solve the aforementioned problems faced by flying robots.  A rotation and scale invariant visual-based solution, oriented fast and rotated brief (ORB-SLAM) is one of the best solutions for localization and mapping using monocular vision.  In this paper, an ORB-SLAM3 has been used to carry out the research on localizing micro-aerial vehicle Tello and mapping an unknown environment.  The effectiveness of ORB-SLAM3 was tested in a variety of indoor environments.   An integrated adaptive controller was used for an autonomous flight that used the 3D map, produced by ORB-SLAM3 and our proposed novel technique for robust initialization of the SLAM system during flight.  The results show that ORB-SLAM3 can provide accurate localization and mapping for flying robots, even in challenging scenarios with fast motion, large camera movements, and dynamic environments.  Furthermore, our results show that the proposed system is capable of navigating and mapping challenging indoor situations

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661
    • …
    corecore