431 research outputs found

    Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Get PDF
    Isolatedepisodesofheartrhythmdisordershavebeenreportedduring40yearsofspaceflight,triggeringresearchtoevaluatetheriskofdevelopinglife-threateningarrhythmiasinducedbyprolongedexposuretoweightlessness.Infact,theseeventscouldcompromiseastronautperformanceduringexploratorymissions,aswellasposeatrisktheastronauthealth,duetolimitedoptionsofcareonboardtheInternationalSpaceStation.Startingfromoriginalobservations,thisminireviewwillexplorethelatestresearchinthisfield,consideringresultsobtainedbothduringspaceflightandonEarth,thelatterbysimulatinglong-termexposuretomicrogravitybyhead-downbedrestmaneuverinordertoelicitcardiovasculardeconditioningonnormalvolunteers

    Publications of the Space Physiology and Countermeasures Program, Cardiopulmonary Discipline: 1980-1990

    Get PDF
    A 10-year cumulative bibliography of publications resulting from research supported by the Cardiopulmonary Discipline of the Space Physiology and Countermeasures Program of NASA's Life Sciences Division is provided. Primary subjects included in this bibliography are Fluid Shifts, Cardiovascular Fitness, Cardiovascular Physiology, and Pulmonary Physiology. General physiology references are also included. Principal investigators whose research tasks resulted in publication are identified. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University

    Evidence Based Review: Risk of Cardiac Rhythm Problems During Spaceflight

    Get PDF
    Very little research has systematically evaluated the prevalence (or potential risk) of cardiac arrhythmias during space flight. There are several observational reports of non life-threatening but potentially concerning arrhythmias. At least two potential risk factors for arrhythmias have been reported either during or immediately after space flight: cardiac atrophy and a prolonged QTc interval. The potential severity of the mission impact of a serious arrhythmia requires that a systematic evaluation be conducted of the risk of arrhythmia due to space flight

    Cardiovascular Adaptations to Long Duration Head-Down Tilt Bed Rest

    Get PDF
    INTRODUCTION: Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS: Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 days of bed rest, and compared to pre-bed rest data. Ultrasound data were collected on vascular and cardiac structure and function. Tilt testing was conducted for 30 minutes or until presyncopal symptoms intervened. RESULTS: Plasma volume was significantly reduced by day 7 of bed rest. Flow-mediated dilation in the leg was significantly increased at bed rest day 49. Arterial responses to nitroglycerin differed in the arm and leg, but did not change as a result of bed rest. Intimal-medial thickness markedly decreased at bed rest days 21, 35 and 49. Several cardiac functional parameters including isovolumic relaxation time, ejection time and myocardial performance index were significantly increased (indicating a decrease in cardiac function) during bed rest. There was a trend for decreased orthostatic tolerance following 60 days of bed rest. DISCUSSION: These data suggest that 6 head-down tilt bed rest alters cardiovascular structure and function in a pattern similar to short duration spaceflight. Additionally, the vascular alterations are primarily seen in the lower body, while vessels of the upper body are unaffected. KEY WORDS: spaceflight, orthostatic intolerance, hypotension, fluid-shift, plasma volum

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 162, January 1977

    Get PDF
    This bibliography lists 189 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1976

    Hypovolemia Induced Orthostatic Hypotension in Presyncopal Astronauts and Normal Subjects Relates to Hypo-Sympathetic Responsiveness

    Get PDF
    Circulating blood volume is reduced during spaceflight, leaving astronauts hemodynamically compromised after landing. Because of this hypovolemia, crew members are able to withstand a postflight 10 minute upright tilt test only if they are able to mount a hyper-sympathetic response. Previous work from this laboratory has shown that about 30% of astronauts, primarily female, have postflight sympathetic responses to tilt that are equal to or less than their preflight responses and thus, they become presyncopal. Part of the mission of the cardiovascular lab at the Johnson Space Center is to identify susceptible crewmembers before flight so that individualized countermeasures can be prescribed. The goal of this study was to develop a ground based model of hypovolemia that could be used for this purpose We tested the hypothesis that hypovolemia alone, in the absence of spaceflight, would reproduce the landing day rate of presyncope during upright tilt in normal volunteers. Further, we hypothesized that, during hypovolemia, subjects who had sympathetic responses that were equal to or less than their normovolemic responses would become presyncopal during upright tilt tests. We studied 20 subjects, 13 male and 7 female, on two separate occasions: during normovolemia and hypovolemia. We induced hypovolemia with intravenous furosemide 40 hours prior to the experiment day, followed by a 10MEq Na diet. On the normovolemia and hypovolemia test days, plasma volume, tilt tolerance and supine and standing arterial pressure, heart rate and plasma norepinephrine levels were measured. A two factor, repeated measures analysis of variance was performed to examine the differences between group (presyncopal vs. non-presyncopal) and day (normovolemia vs. hypovolemia) effects. There were no differences in baseline arterial pressure between normovolemia and hypovolemia or between presyncopal and non-presyncopal groups, but heart rates were higher with hypovolemia in both groups (presyncopal: 70 5 bpm vs. 63 3 bpm, P = 0.003, non-presyncopal: 59 2 bpm vs. 52 2 bpm, P = 0.003). Similar to patterns reported after flight, non-presyncopal subjects had greater norepinephrine responses to tilt during hypovolemia compared to normovolemia (580 79 vs. 298 37 pg/ml, P < 0.05), but presyncopal subjects did not (180 44 vs. 145 32 pg/ml, P = NS). This new model has the potential to accelerate the development of countermeasures and save flight resources. It can be used to identify astronauts who will become presyncopal on landing day, so that prospective, individualized countermeasures can be developed. In addition, it can also be used to screen candidate countermeasures prior to requests for bed rest or inflight resources

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 218, April 1981

    Get PDF
    This bibliography lists 161 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1981

    Biomedical research publications: 1980 - 1982

    Get PDF
    Publications concerning the major physiological and psychological problems encountered by man when he undertakes space flight are listed. Nine research areas are included: cardiovascular deconditioning, motion sickness, bone alterations, muscle atrophy, blood cell alterations, fluid and eletrolyte changes, radiation effects and protection, behavior and performance, and general biomedical research

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 184

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1978

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 227. January 1982

    Get PDF
    This bibliography lists 166 reports, articles, and other documents introduced into the NASA scientific and technical information system in December 1981
    • …
    corecore