27,144 research outputs found

    Soft set theory based decision support system for mining electronic government dataset

    Get PDF
    Electronic government (e-gov) is applied to support performance and create more efficient and effective public services. Grouping data in soft-set theory can be considered as a decision-making technique for determining the maturity level of e-government use. So far, the uncertainty of the data obtained through the questionnaire has not been maximally used as an appropriate reference for the government in determining the direction of future e-gov development policy. This study presents the maximum attribute relative (MAR) based on soft set theory to classify attribute options. The results show that facilitation conditions (FC) are the highest variable in influencing people to use e-government, followed by performance expectancy (PE) and system quality (SQ). The results provide useful information for decision makers to make policies about their citizens and potentially provide recommendations on how to design and develop e-government systems in improving public services

    Ground Profile Recovery from Aerial 3D LiDAR-based Maps

    Get PDF
    The paper presents the study and implementation of the ground detection methodology with filtration and removal of forest points from LiDAR-based 3D point cloud using the Cloth Simulation Filtering (CSF) algorithm. The methodology allows to recover a terrestrial relief and create a landscape map of a forestry region. As the proof-of-concept, we provided the outdoor flight experiment, launching a hexacopter under a mixed forestry region with sharp ground changes nearby Innopolis city (Russia), which demonstrated the encouraging results for both ground detection and methodology robustness.Comment: 8 pages, FRUCT-2019 conferenc

    Aspects of automation of selective cleaning

    Get PDF
    Cleaning (pre-commercial thinning) is a silvicultural operation, primarily used to improve growing conditions of remaining trees in young stands (ca. 3 - 5 m of height). Cleaning costs are considered high in Sweden and the work is laborious. Selective cleaning with autonomous artificial agents (robots) may rationalise the work, but requires new knowledge. This thesis aims to analyse key issues regarding automation of cleaning; suggesting general solutions and focusing on automatic selection of main-stems. The essential requests put on cleaning robots are to render acceptable results and to be cost competitive. They must be safe and be able to operate independently and unattended for several hours in a dynamic and non-deterministic environment. Machine vision, radar, and laser scanners are promising techniques for obstacle avoidance, tree identification, and tool control. Horizontal laser scannings were made, demonstrating the possibility to find stems and make estimations regarding their height and diameter. Knowledge regarding stem selections was retrieved through qualitative interviews with persons performing cleaning. They consider similar attributes of trees, and these findings and current cleaning manuals were used in combination with a field inventory in the development of a decision support system (DSS). The DSS selects stems by the attributes species, position, diameter, and damage. It was used to run computer-based simulations in a variety of young forests. A general follow-up showed that the DSS produced acceptable results. The DSS was further evaluated by comparing its selections with those made by experienced cleaners, and by a test in which laymen performed cleanings following the system. The DSS seems to be useful and flexible, since it can be adjusted in accordance with the cleaners’ results. The laymen’s results implied that the DSS is robust and that it could be used as a training tool. Using the DSS in automatic, or semi-automatic, cleaning operations should be possible if and when selected attributes can be automatically perceived. A suitable base-machine and thorough research, regarding e.g. safety, obstacle avoidance, and target identification, is needed to develop competitive robots. However, using the DSS as a training-tool for inexperienced cleaners could be an interesting option as of today

    Robust geometric forest routing with tunable load balancing

    Get PDF
    Although geometric routing is proposed as a memory-efficient alternative to traditional lookup-based routing and forwarding algorithms, it still lacks: i) adequate mechanisms to trade stretch against load balancing, and ii) robustness to cope with network topology change. The main contribution of this paper involves the proposal of a family of routing schemes, called Forest Routing. These are based on the principles of geometric routing, adding flexibility in its load balancing characteristics. This is achieved by using an aggregation of greedy embeddings along with a configurable distance function. Incorporating link load information in the forwarding layer enables load balancing behavior while still attaining low path stretch. In addition, the proposed schemes are validated regarding their resilience towards network failures

    Study of USGS/NASA land use classification system

    Get PDF
    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    corecore