2,221 research outputs found

    Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism

    Get PDF
    Infrared spectroscopy on synthetic olivines has established that there are at least four different mechanisms by which hydrogen is incorporated into the crystal structure. Two mechanisms occur in the system MgO-SiO2-H2O associated with silicon and magnesium vacancies, respectively. A third mechanism is associated with trivalent cation substitution, commonly Fe3+ in natural olivine, while the fourth mechanism, which is the one most prevalent in natural olivines from the spinel-peridotite facies of the Earth’s upper mantle, is associated with Ti4+ [Berry et al., 2005]. Here first principles calculations based on density functional theory are used to derive the structure and relative energies of the two defects in the pure MgO-SiO2-H2O system, and possible hydrogen-bearing and hydrogen-free point defects in Ti4+-doped forsterite. Calculated structures are used to compare the predicted orientation of the O-H bonds with the experimentally determined polarization. The energies are used to discuss how different regimes of chemical environment, temperature (T), pressure (P), and both water content and water fugacity ( fH2O), impact on which of the different hydroxyl substitution mechanisms are thermodynamically stable. We find that given the presence of Ti impurities, the most stable mechanism involves the formation of silicon vacancies containing two protons charge balanced by a Ti4+ cation occupying an adjacent octahedral site. This mechanism leads to the water-mediated formation of silicon vacancies. As silicon is known to be the most slowly diffusing species in olivine, this provides a credible explanation of the observed water weakening effect in olivine

    Physical Origins of Thermal Properties of Cement Paste

    Get PDF
    Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their thermal properties at the nanoscale and its connection to the macroscale properties still remain rather obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (<2  THz) compared to the vibrational states predicted by the Debye model. This anomaly is commonly referred to as the boson peak in glass physics. In addition, the specific-heat capacity of CSH in both dry and saturated states scales linearly with the calcium-to-silicon ratio. We show that the nanoscale-confining environment of CSH decreases the apparent heat capacity of water by a factor of 4. Furthermore, full thermal conductivity tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of cement paste during the hydration process, independent of fitting parameters.Portland Cement AssociationNational Ready Mixed Concrete Association (Research and Education Foundation

    Fluid transport through porous media: A novel application of kinetic Monte Carlo simulations

    Get PDF
    With increasing global energy demands, unconventional formations, such as shale rocks, are becoming an important source of natural gas. Current efforts are focused on understanding fluid dynamics to maximise natural gas yields. Although shale gas is playing an increasingly important role in the global energy industry, our knowledge of the fundamentals of fluid transport through multiscale and heterogeneous porous media is incomplete, as both static and dynamic properties of confined fluids differ tremendously from those at the macroscopic scale. Transport models, derived from atomistic studies, are frequently used to bridge this gap. However, capturing and upscaling the interactions between the pore surface and fluids remains challenging. In this thesis, a computationally efficient stochastic approach is implemented to simulate fluid transport through complex porous media. One-, two-, and three-dimensional kinetic Monte Carlo models were developed to predict methane transport in heterogeneous pore networks consisting of hydrated and water-free micro-, meso-, and macropores, representative of shale rock minerals. Molecular dynamics (MD) simulations, experimental imaging and adsorption data, which describe the surface – fluid interaction and the pore network features respectively were utilised to inform the KMC models. The stochastic approach was used to (1) quantify the effect of the pore network characteristics (pore size, chemistry, connectivity, porosity, and anisotropy) on the transport of supercritical methane, (2) estimate the permeability of an Eagle Ford shale sample and evaluate the effect of proppants on permeability, and (3) to upscale atomistic insights and predict fluid diffusivity through different size pores. The results obtained were consistent with the analytical solutions of the diffusion equation, experimental data, and MD simulations, respectively, demonstrating the effectiveness of the stochastic approach. In addition, the applicability of less computationally intensive deterministic approaches was examined using multiple case studies; recommendations are provided on the optimal conditions under which each method can be used

    Hierarchical simulations of hybrid polymer-solid materials

    Get PDF
    Complex polymer-solid materials have gained a lot of attention during the last 2-3 decades due to the fundamental physical problems and the broad spectrum of technological applications in which they are involved. Therefore, significant progress concerning the simulations of such hybrid soft-hard nanostructured systems has been made in the last few years. Simulation techniques vary from quantum to microscopic (atomistic) up to mesoscopic (coarse-grained) level. Here we give a short overview of simulation approaches on model polymer-solid interfacial systems for all different levels of description. In addition, we also present a brief outlook concerning the open questions in this field, from the point of view of both physical problems and computational methodologies

    Pathways of diffusion through microelectronic packaging materials

    Get PDF
    • …
    corecore