224,578 research outputs found

    Depth mapping of integral images through viewpoint image extraction with a hybrid disparity analysis algorithm

    Get PDF
    Integral imaging is a technique capable of displaying 3–D images with continuous parallax in full natural color. It is one of the most promising methods for producing smooth 3–D images. Extracting depth information from integral image has various applications ranging from remote inspection, robotic vision, medical imaging, virtual reality, to content-based image coding and manipulation for integral imaging based 3–D TV. This paper presents a method of generating a depth map from unidirectional integral images through viewpoint image extraction and using a hybrid disparity analysis algorithm combining multi-baseline, neighbourhood constraint and relaxation strategies. It is shown that a depth map having few areas of uncertainty can be obtained from both computer and photographically generated integral images using this approach. The acceptable depth maps can be achieved from photographic captured integral images containing complicated object scene

    Natural images allow universal adversarial attacks on medical image classification using deep neural networks with transfer learning

    Get PDF
    Transfer learning from natural images is used in deep neural networks (DNNs) for medical image classification to achieve a computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are expected to be limited because training datasets (medical images), which are often required for adversarial attacks, are generally unavailable in terms of security and privacy preservation. Nevertheless, in this study, we demonstrated that adversarial attacks are also possible using natural images for medical DNN models with transfer learning, even if such medical images are unavailable; in particular, we showed that universal adversarial perturbations (UAPs) can also be generated from natural images. UAPs from natural images are useful for both non-targeted and targeted attacks. The performance of UAPs from natural images was significantly higher than that of random controls. The use of transfer learning causes a security hole, which decreases the reliability and safety of computer-based disease diagnosis. Model training from random initialization reduced the performance of UAPs from natural images; however, it did not completely avoid vulnerability to UAPs. The vulnerability of UAPs to natural images is expected to become a significant security threat

    De-smokeGCN: Generative Cooperative Networks for Joint Surgical Smoke Detection and Removal

    Get PDF
    Surgical smoke removal algorithms can improve the quality of intra-operative imaging and reduce hazards in image-guided surgery, a highly desirable post-process for many clinical applications. These algorithms also enable effective computer vision tasks for future robotic surgery. In this paper, we present a new unsupervised learning framework for high-quality pixel-wise smoke detection and removal. One of the well recognized grand challenges in using convolutional neural networks (CNNs) for medical image processing is to obtain intra-operative medical imaging datasets for network training and validation, but availability and quality of these datasets are scarce. Our novel training framework does not require ground-truth image pairs. Instead, it learns purely from computer-generated simulation images. This approach opens up new avenues and bridges a substantial gap between conventional non-learning based methods and which requiring prior knowledge gained from extensive training datasets. Inspired by the Generative Adversarial Network (GAN), we have developed a novel generative-collaborative learning scheme that decomposes the de-smoke process into two separate tasks: smoke detection and smoke removal. The detection network is used as prior knowledge, and also as a loss function to maximize its support for training of the smoke removal network. Quantitative and qualitative studies show that the proposed training framework outperforms the state-of-the-art de-smoking approaches including the latest GAN framework (such as PIX2PIX). Although trained on synthetic images, experimental results on clinical images have proved the effectiveness of the proposed network for detecting and removing surgical smoke on both simulated and real-world laparoscopic images

    Image Analysis and Processing with Applications in Proteomics and Medicine

    Get PDF
    This thesis introduces unsupervised image analysis algorithms for the segmentation of several types of images, with an emphasis on proteomics and medical images. Segmentation is a challenging task in computer vision with essential applications in biomedical engineering, remote sensing, robotics and automation. Typically, the target region is separated from the rest of image regions utilizing defining features including intensity, texture, color or motion cues. In this light, multiple segments are generated and the selection of the most significant segments becomes a controversial decision as it highly hinges on heuristic considerations. Moreover, the separation of the target regions is impeded by several daunting factors such as: background clutter, the presence of noise and artifacts as well as occlusions on multiple target regions. This thesis focuses on image segmentation using deformable models and specifically region-based Active Contours (ACs) because of their strong mathematical foundation and their appealing properties

    Segmentation of Tubular Structures Using Iterative Training with Tailored Samples

    Full text link
    We propose a minimal path method to simultaneously compute segmentation masks and extract centerlines of tubular structures with line-topology. Minimal path methods are commonly used for the segmentation of tubular structures in a wide variety of applications. Recent methods use features extracted by CNNs, and often outperform methods using hand-tuned features. However, for CNN-based methods, the samples used for training may be generated inappropriately, so that they can be very different from samples encountered during inference. We approach this discrepancy by introducing a novel iterative training scheme, which enables generating better training samples specifically tailored for the minimal path methods without changing existing annotations. In our method, segmentation masks and centerlines are not determined after one another by post-processing, but obtained using the same steps. Our method requires only very few annotated training images. Comparison with seven previous approaches on three public datasets, including satellite images and medical images, shows that our method achieves state-of-the-art results both for segmentation masks and centerlines.Comment: Accepted to IEEE/CVF International Conference on Computer Vision (ICCV), Paris, 202

    Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality

    Get PDF
    The visualization of medical images with advanced techniques, such as augmented reality and virtual reality, represent a breakthrough for medical professionals. In contrast to more traditional visualization tools lacking 3D capabilities, these systems use the three available dimensions. To visualize medical images in 3D, the anatomical areas of interest must be segmented. Currently, manual segmentation, which is the most commonly used technique, and semi-automatic approaches can be time consuming because a doctor is required, making segmentation for each individual case unfeasible. Using new technologies, such as computer vision and artificial intelligence for segmentation algorithms and augmented and virtual reality for visualization techniques implementation, we designed a complete platform to solve this problem and allow medical professionals to work more frequently with anatomical 3D models obtained from medical imaging. As a result, the Nextmed project, due to the different implemented software applications, permits the importation of digital imaging and communication on medicine (dicom) images on a secure cloud platform and the automatic segmentation of certain anatomical structures with new algorithms that improve upon the current research results. A 3D mesh of the segmented structure is then automatically generated that can be printed in 3D or visualized using both augmented and virtual reality, with the designed software systems. The Nextmed project is unique, as it covers the whole process from uploading dicom images to automatic segmentation, 3D reconstruction, 3D visualization, and manipulation using augmented and virtual reality. There are many researches about application of augmented and virtual reality for medical image 3D visualization; however, they are not automated platforms. Although some other anatomical structures can be studied, we focused on one case: a lung study. Analyzing the application of the platform to more than 1000 dicom images and studying the results with medical specialists, we concluded that the installation of this system in hospitals would provide a considerable improvement as a tool for medical image visualization
    • 

    corecore