229,401 research outputs found

    Context-Aware Embeddings for Automatic Art Analysis

    Full text link
    Automatic art analysis aims to classify and retrieve artistic representations from a collection of images by using computer vision and machine learning techniques. In this work, we propose to enhance visual representations from neural networks with contextual artistic information. Whereas visual representations are able to capture information about the content and the style of an artwork, our proposed context-aware embeddings additionally encode relationships between different artistic attributes, such as author, school, or historical period. We design two different approaches for using context in automatic art analysis. In the first one, contextual data is obtained through a multi-task learning model, in which several attributes are trained together to find visual relationships between elements. In the second approach, context is obtained through an art-specific knowledge graph, which encodes relationships between artistic attributes. An exhaustive evaluation of both of our models in several art analysis problems, such as author identification, type classification, or cross-modal retrieval, show that performance is improved by up to 7.3% in art classification and 37.24% in retrieval when context-aware embeddings are used

    Large-scale interactive retrieval in art collections using multi-style feature aggregation

    Get PDF
    Finding objects and motifs across artworks is of great importance for art history as it helps to understand individual works and analyze relations between them. The advent of digitization has produced extensive digital art collections with many research opportunities. However, manual approaches are inadequate to handle this amount of data, and it requires appropriate computer-based methods to analyze them. This article presents a visual search algorithm and user interface to support art historians to find objects and motifs in extensive datasets. Artistic image collections are subject to significant domain shifts induced by large variations in styles, artistic media, and materials. This poses new challenges to most computer vision models which are trained on photographs. To alleviate this problem, we introduce a multi-style feature aggregation that projects images into the same distribution, leading to more accurate and style-invariant search results. Our retrieval system is based on a voting procedure combined with fast nearest-neighbor search and enables finding and localizing motifs within an extensive image collection in seconds. The presented approach significantly improves the state-of-the-art in terms of accuracy and search time on various datasets and applies to large and inhomogeneous collections. In addition to the search algorithm, we introduce a user interface that allows art historians to apply our algorithm in practice. The interface enables users to search for single regions, multiple regions regarding different connection types and holds an interactive feedback system to improve retrieval results further. With our methodological contribution and easy-to-use user interface, this work manifests further progress towards a computer-based analysis of visual art

    Adaptation of Lighting Styles from Traditional Paintings to Computer Generated Scenes

    Get PDF
    Image making using Computer Graphics has become extremely popular. Great advances in computer graphics have led to an increasing number of people using this medium. But Computer Graphics on its own is not art unless art principles are applied to it, as is the case with any other art medium. Studying art principles used in traditional paintings is an invaluable way of learning how to create images that tell a story, look believable, evoke appropriate emotions, and remain aesthetically alluring too. With that motivation in mind, a visual analysis of paintings of John Register, Jules Breton and Chris Peters was conducted to better understand their styles. Two paintings by each of the three artists were then selected for an in depth study and based on those, computer generated renderings were produced. Inspired by each artist's style, digital scenes were modeled, lit and rendered using 3D authoring tools. The final rendered images exhibit the lighting style unique to each of the three artists

    Computer Analysis of Architecture Using Automatic Image Understanding

    Full text link
    In the past few years, computer vision and pattern recognition systems have been becoming increasingly more powerful, expanding the range of automatic tasks enabled by machine vision. Here we show that computer analysis of building images can perform quantitative analysis of architecture, and quantify similarities between city architectural styles in a quantitative fashion. Images of buildings from 18 cities and three countries were acquired using Google StreetView, and were used to train a machine vision system to automatically identify the location of the imaged building based on the image visual content. Experimental results show that the automatic computer analysis can automatically identify the geographical location of the StreetView image. More importantly, the algorithm was able to group the cities and countries and provide a phylogeny of the similarities between architectural styles as captured by StreetView images. These results demonstrate that computer vision and pattern recognition algorithms can perform the complex cognitive task of analyzing images of buildings, and can be used to measure and quantify visual similarities and differences between different styles of architectures. This experiment provides a new paradigm for studying architecture, based on a quantitative approach that can enhance the traditional manual observation and analysis. The source code used for the analysis is open and publicly available
    corecore