408 research outputs found

    Computer aided diagnosis for severity assessment of pneumoconiosis using CT images

    Get PDF
    240,000 participants have a screening for diagnosis of pneumoconiosis every year in Japan. Radiograph is used for staging of severity in pneumoconiosis worldwide. This paper presents a method for quantitative assessment of severity in pneumoconiosis using both size and frequency of lung nodules that detected by thin-section CT images. This method consists of three steps. First, thoracic organs (body, ribs, spine, trachea, bronchi, lungs, heart, and pulmonary blood vessels) are segmented. Second, lung nodules that have radius over 1.5mm are detected. These steps used functions of our developed computer aided detection system of chest CT images. Third, severity in pneumoconiosis is quantified using size and frequency of lung nodules. This method was applied to nine pneumoconiosis patients. The initial results showed that proposed method can assess severity in pneumoconiosis quantitatively. This paper demonstrates effectiveness of our method in diagnosis and prognosis of pneumoconiosis in CT screening

    QCT as a Base of Computer Aided Diagnosis of Osteoporotical Changes

    Get PDF

    Annual change in bone mineral density in COPD

    Get PDF
    Background: Osteoporosis is a well-known comorbidity in COPD. It is associated with poor health status and prognosis. Although the exact pathomechanisms are unclear, osteoporosis is suggested to be either a comorbidity due to shared risk factors with COPD or a systematic effect of COPD with a cause–effect relationship. This study aimed to evaluate whether progression of osteoporosis is synchronized with that of COPD. Materials and methods: Data from 103 patients with COPD included in the Hokkaido COPD cohort study were analyzed. Computed tomography (CT) attenuation values of thoracic vertebrae 4, 7, and 10 were measured using custom software, and the average value (average bone density; ABD4,7,10) was calculated. The percentage of low attenuation volume (LAV%) for each patient was also calculated for evaluation of emphysematous lesions. Annual change in thoracic vertebral CT attenuation, which is strongly correlated with dual-energy X-ray absorptiometry-measured bone mineral density, was compared with that in FEV1.0 or emphysematous lesions. Results: In the first CT data set, ABD4,7,10 was significantly correlated with age (ρ=–0.331; p=0.0006), body mass index (BMI; ρ=0.246; p=0.0136), St George’s Respiratory Questionnaire (SGRQ) activity score (ρ=–0.248; p=0.0115), eosinophil count (ρ=0.229; p=0.0198), and LAV% (ρ=–0.372; p=0.0001). However, ABD4,7,10 was not associated with FEV1.0. After adjustment for age, BMI, SGRQ activity score, and eosinophil count, no significant relationship was found between ABD4,7,10 and LAV%. Annual change in ABD4,7,10 was not associated with annual change in LAV% or FEV1.0. Conclusion: Progression of osteoporosis and that of COPD are not directly related or synchronized with each other

    Bone Density Measurement Using Computed Tomography

    Get PDF
    corecore