13,981 research outputs found

    GenomeFingerprinter and universal genome fingerprint analysis for systematic comparative genomics

    Get PDF
    How to compare whole genome sequences at large scale has not been achieved via conventional methods based on pair-wisely base-to-base comparison; nevertheless, no attention was paid to handle in-one-sitting a number of genomes crossing genetic category (chromosome, plasmid, and phage) with farther divergences (much less or no homologous) over large size ranges (from Kbp to Mbp). We created a new method, GenomeFingerprinter, to unambiguously produce three-dimensional coordinates from a sequence, followed by one three-dimensional plot and six two-dimensional trajectory projections to illustrate whole genome fingerprints. We further developed a set of concepts and tools and thereby established a new method, universal genome fingerprint analysis. We demonstrated their applications through case studies on over a hundred of genome sequences. Particularly, we defined the total genetic component configuration (TGCC) (i.e., chromosome, plasmid, and phage) for describing a strain as a system, and the universal genome fingerprint map (UGFM) of TGCC for differentiating a strain as a universal system, as well as the systematic comparative genomics (SCG) for comparing in-one-sitting a number of genomes crossing genetic category in diverse strains. By using UGFM, UGFM-TGCC, and UGFM-TGCC-SCG, we compared a number of genome sequences with farther divergences (chromosome, plasmid, and phage; bacterium, archaeal bacterium, and virus) over large size ranges (6Kbp~5Mbp), giving new insights into critical problematic issues in microbial genomics in the post-genomic era. This paper provided a new method for rapidly computing, geometrically visualizing, and intuitively comparing genome sequences at fingerprint level, and hence established a new method of universal genome fingerprint analysis for systematic comparative genomics.Comment: 63 pages, 15 figures, 5 table

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa

    AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system

    Get PDF
    We have implemented a genome annotation system for prokaryotes called AGMIAL. Our approach embodies a number of key principles. First, expert manual annotators are seen as a critical component of the overall system; user interfaces were cyclically refined to satisfy their needs. Second, the overall process should be orchestrated in terms of a global annotation strategy; this facilitates coordination between a team of annotators and automatic data analysis. Third, the annotation strategy should allow progressive and incremental annotation from a time when only a few draft contigs are available, to when a final finished assembly is produced. The overall architecture employed is modular and extensible, being based on the W3 standard Web services framework. Specialized modules interact with two independent core modules that are used to annotate, respectively, genomic and protein sequences. AGMIAL is currently being used by several INRA laboratories to analyze genomes of bacteria relevant to the food-processing industry, and is distributed under an open source license
    • …
    corecore